Suppr超能文献

基于具有空间转换器的深度残差网络的骨骼骨龄预测。

Skeletal bone age prediction based on a deep residual network with spatial transformer.

机构信息

Department of Orthopedics, First Affiliated Hospital of China Medical University, Shenyang, China.

Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.

出版信息

Comput Methods Programs Biomed. 2020 Dec;197:105754. doi: 10.1016/j.cmpb.2020.105754. Epub 2020 Sep 12.

Abstract

OBJECTIVE

Bone age prediction can be performed by medical experts manually assessment of X-ray images of the hand bone. In practice, the workload is huge, resource consumption is large, measurement takes a long time, and it is easily influenced by human factors. As such, manual estimation of bone age takes a long time and the results fluctuate greatly depending on the proficiency of the radiologist.

METHODS

The left-hand X-ray image data was identified and pre-processed. X-ray image analysis method using on deep neural network was used to automatically extract the key features of the left-hand joint bone age, and evaluation performance of the model was implemented.

RESULTS

In this paper, the deep learning method can be used to obtain the X-ray bone image features, and the convolutional neural network is used to automatically assess the age of bone. The feature region extraction method based on deep learning can extract feature information with superior performance compared to the traditional image analysis technique. Based on the residual network (ResNet) model in the deep learning algorithm, the average absolute error of the age of bones detected by the bone age assessment model is 0.455 better than traditional methods and only end-to-end deep learning methods. When the learning rate is greater than 0.0005, the MAE of Inception Resnet v2 model is higher than most models. Accuracy of bone age prediction is as high as 97.6%.

CONCLUSION

In comparison with the traditional machine learning feature extraction technique, the convolutional neural network based on feature extraction has better performance in the bone age regression model, and further improves the accuracy of image-based age of bone assessment.

摘要

目的

骨龄预测可以通过医学专家对手骨 X 光图像的人工评估来完成。在实践中,工作量巨大,资源消耗大,测量时间长,并且容易受到人为因素的影响。因此,手动估计骨龄需要很长时间,并且结果会因放射科医生的熟练程度而波动很大。

方法

对手的 X 射线图像数据进行识别和预处理。使用基于深度神经网络的 X 射线图像分析方法自动提取左手关节骨龄的关键特征,并实现模型的评估性能。

结果

本文提出了一种基于深度学习的 X 射线骨图像特征获取方法,以及利用卷积神经网络自动评估骨龄的方法。基于深度学习的特征区域提取方法可以提取出比传统图像分析技术更具优势的特征信息。基于深度学习算法中的残差网络(ResNet)模型,骨龄评估模型检测到的骨骼年龄的平均绝对误差(MAE)为 0.455,优于传统方法和仅端到端的深度学习方法。当学习率大于 0.0005 时,Inception Resnet v2 模型的 MAE 高于大多数模型。骨龄预测的准确率高达 97.6%。

结论

与传统的机器学习特征提取技术相比,基于特征提取的卷积神经网络在骨龄回归模型中具有更好的性能,进一步提高了基于图像的骨龄评估的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验