Suppr超能文献

一种具有异质特征学习的深度自动化骨骼骨龄评估模型。

A Deep Automated Skeletal Bone Age Assessment Model with Heterogeneous Features Learning.

机构信息

School of Computer Science and Engineering, Beihang, Beijing, 100191, China.

National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.

出版信息

J Med Syst. 2018 Nov 3;42(12):249. doi: 10.1007/s10916-018-1091-6.

Abstract

Skeletal bone age assessment is a widely used standard procedure in both disease detection and growth prediction for children in endocrinology. Conventional manual assessment methods mainly rely on personal experience in observing X-ray images of left hand and wrist to calculate bone age, which show some intrinsic limitations from low efficiency to unstable accuracy. To address these problems, some automated methods based on image processing or machine learning have been proposed, while their performances are not satisfying enough yet in assessment accuracy. Motivated by the remarkable success of deep learning (DL) techniques in the fields of image classification and speech recognition, we develop a deep automated skeletal bone age assessment model based on convolutional neural networks (CNNs) and support vector regression (SVR) using multiple kernel learning (MKL) algorithm to process heterogeneous features in this paper. This deep framework has been constructed, not only exploring the X-ray images of hand and twist but also some other heterogeneous information like race and gender. The experiment results prove its better performance with higher bone age assessment accuracy on two different data sets compared with the state of the art, indicating that the fused heterogeneous features provide a better description of the degree of bones' maturation.

摘要

骨骼骨龄评估是内分泌学中用于儿童疾病检测和生长预测的一种广泛使用的标准程序。传统的手动评估方法主要依赖于个人经验,通过观察左手和手腕的 X 射线图像来计算骨龄,这些方法从效率低到准确性不稳定都存在一些内在的局限性。为了解决这些问题,已经提出了一些基于图像处理或机器学习的自动化方法,但它们在评估准确性方面的性能还不够令人满意。受深度学习 (DL) 技术在图像分类和语音识别领域取得显著成功的启发,我们开发了一种基于卷积神经网络 (CNN) 和支持向量回归 (SVR) 的深度自动化骨骼骨龄评估模型,并使用多核学习 (MKL) 算法来处理本文中的异构特征。该深度框架不仅探索了手部和扭曲的 X 射线图像,还探索了种族和性别等其他一些异构信息。实验结果表明,与现有技术相比,该模型在两个不同的数据集上具有更高的骨龄评估准确性,这表明融合的异构特征提供了对骨骼成熟度的更好描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验