Suppr超能文献

基于深度结构算法的多通道 ROI 自动特征学习在肺癌计算机诊断中的应用。

Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.

机构信息

College of Engineering, University of Texas at El Paso, El Paso, TX, United States.

College of Engineering, University of Oklahoma, Norman, OK, United States.

出版信息

Comput Biol Med. 2017 Oct 1;89:530-539. doi: 10.1016/j.compbiomed.2017.04.006. Epub 2017 Apr 13.

Abstract

This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well.

摘要

本研究旨在分析使用深度结构化算法自动提取特征在肺结节 CT 图像诊断中的能力,并将其与使用手工制作特征的传统计算机辅助诊断(CADx)系统进行比较。所有 1018 例均来自肺影像数据库联盟(LIDC)公共肺癌数据库。根据四位放射科医生的标记对结节进行分割,并对结节图像的每一层进行旋转,生成 13668 个样本。本研究设计并实现了三种基于多通道 ROI 的深度结构化算法:卷积神经网络(CNN)、深度置信网络(DBN)和堆叠去噪自动编码器(SDAE)。为了进行比较,我们还实现了一个使用手工制作特征(包括密度特征、纹理特征和形态特征)的 CADx 系统。通过使用 10 折交叉验证方法和评估受试者工作特征曲线(ROC)下面积的指标(AUC)来评估每个方案的性能。观察到的最高曲线下面积(AUC)为 0.899±0.018,由 CNN 实现,明显高于 AUC=0.848±0.026 的传统 CADx。DBN 的结果也略高于 CADx,而 SDAE 略低。通过可视化自动生成的特征,我们从深度结构化方案中发现了一些有意义的检测器,如弯曲笔画检测器。研究结果表明,具有自动生成特征的深度结构化算法可以在肺结节诊断中实现理想的性能。通过调整参数和使用足够大的数据集,深度学习算法可以比当前流行的 CADx 具有更好的性能。我们相信具有类似数据预处理步骤的深度学习算法也可以应用于其他医学图像分析领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验