Suppr超能文献

采用奥托棱镜中可调谐石墨烯等离子体研究水溶液分子的红外光谱。

Resolved Infrared Spectroscopy of Aqueous Molecules Employing Tunable Graphene Plasmons in an Otto Prism.

机构信息

Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, P. R. China.

Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 400714 Chongqing, P. R. China.

出版信息

Anal Chem. 2020 Dec 1;92(23):15370-15378. doi: 10.1021/acs.analchem.0c02733. Epub 2020 Nov 12.

Abstract

Real-time and detection of aqueous solution is essential for bioanalysis and chemical reactions. However, it is extremely challenging for infrared microscopic measurement because of the large background of water absorption. Here, we proposed a wideband-tunable graphene plasmonic infrared biosensor to detect biomolecules in an aqueous environment, employing attenuated total reflection in an Otto prism configuration and tightly confined plasmons in graphene nanoribbons. Benefiting from the graphene plasmonic electric field enhancement, such a biosensor is able to identify the molecular chemical fingerprints without the interference of water absorption. As a proof of concept, the recombinant protein AG and goat anti-mouse immunoglobulin G (IgG) are used as the sensing analytes, of which the vibrational modes (1669 and 1532 cm) are very close to the OH-bending mode of water (1640 cm). Simulation results show that the fingerprints of protein molecules in the water environment can be selectively enhanced. Therefore, the water absorption is successfully suppressed so that two protein modes can be resolved by sweeping graphene Fermi energy in a wide waveband. By further optimizing the incident angle and graphene mobility to improve the mode energy of graphene plasmons, maximum enhancement factors of 112 and 130 can be achieved for amide I and II bands. Our work provides an effective approach for the highly sensitive and selective identification of aqueous-phase molecular fingerprints in fields of healthcare, food safety, and biochemical sensing.

摘要

实时和水溶液的检测对于生物分析和化学反应至关重要。然而,由于水吸收的大背景,对于红外显微镜测量来说,这是极其具有挑战性的。在这里,我们提出了一种宽带可调谐的石墨烯等离子体红外生物传感器,用于在水环境中检测生物分子,采用奥托棱镜配置中的衰减全反射和石墨烯纳米带中的紧密限制等离子体。得益于石墨烯等离子体的电场增强,这种生物传感器能够在没有水吸收干扰的情况下识别分子的化学指纹。作为概念验证,重组蛋白 AG 和山羊抗小鼠免疫球蛋白 G(IgG)被用作传感分析物,其振动模式(1669 和 1532 cm)非常接近水的 OH 弯曲模式(1640 cm)。模拟结果表明,可以选择性地增强水分子环境中蛋白质分子的指纹。因此,成功抑制了水吸收,使得通过在宽频带中扫动石墨烯费米能,可以分辨出两种蛋白质模式。通过进一步优化入射角和石墨烯迁移率来提高石墨烯等离子体的模式能量,酰胺 I 和 II 带的最大增强因子可以达到 112 和 130。我们的工作为医疗保健、食品安全和生化传感等领域中水溶液分子指纹的高灵敏度和选择性识别提供了一种有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验