Siddiqui Abdur-Rahman, N'Diaye Jeanne, Martin Kristin, Baby Aravind, Dawlaty Jahan, Augustyn Veronica, Rodríguez-López Joaquín
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Anal Chem. 2024 Feb 13;96(6):2435-2444. doi: 10.1021/acs.analchem.3c04407. Epub 2024 Jan 31.
The ubiquity of graphitic materials in electrochemistry makes it highly desirable to probe their interfacial behavior under electrochemical control. Probing the dynamics of molecules at the electrode/electrolyte interface is possible through spectroelectrochemical approaches involving surface-enhanced infrared absorption spectroscopy (SEIRAS). Usually, this technique can only be done on plasmonic metals such as gold or carbon nanoribbons, but a more convenient substrate for carbon electrochemical studies is needed. Here, we expanded the scope of SEIRAS by introducing a robust hybrid graphene-on-gold substrate, where we monitored electrografting processes occurring at the graphene/electrolyte interface. These electrodes consist of graphene deposited onto a roughened gold-sputtered internal reflection element (IRE) for attenuated total reflectance (ATR) SEIRAS. The capabilities of the graphene-gold IRE were demonstrated by successfully monitoring the electrografting of 4-amino-2,2,6,6-tetramethyl-1-piperidine -oxyl (4-amino-TEMPO) and 4-nitrobenzene diazonium (4-NBD) in real time. These grafts were characterized using cyclic voltammetry and ATR-SEIRAS, clearly showing the 1520 and 1350 cm NO stretches for 4-NBD and the 1240 cm C-C, C-C-H, and N-Ȯ stretch for 4-amino-TEMPO. Successful grafts on graphene did not show the SEIRAS effect, while grafting on gold was not stable for TEMPO and had poorer resolution than on graphene-gold for 4-NBD, highlighting the uniqueness of our approach. The graphene-gold IRE is proficient at resolving the spectral responses of redox transformations, unambiguously demonstrating the real-time detection of surface processes on a graphitic electrode. This work provides ample future directions for real-time spectroelectrochemical investigations of carbon electrodes used for sensing, energy storage, electrocatalysis, and environmental applications.
石墨材料在电化学中无处不在,因此非常有必要研究其在电化学控制下的界面行为。通过涉及表面增强红外吸收光谱(SEIRAS)的光谱电化学方法,可以探测电极/电解质界面处分子的动力学。通常,这种技术只能在诸如金或碳纳米带等等离子体金属上进行,但需要一种更方便的用于碳电化学研究的基底。在这里,我们通过引入一种坚固的金上石墨烯混合基底扩大了SEIRAS的范围,在该基底上我们监测了在石墨烯/电解质界面发生的电接枝过程。这些电极由沉积在粗糙化的金溅射内反射元件(IRE)上的石墨烯组成,用于衰减全反射(ATR)SEIRAS。通过成功实时监测4-氨基-2,2,6,6-四甲基-1-哌啶氧基(4-氨基-TEMPO)和4-硝基苯重氮盐(4-NBD)的电接枝,证明了石墨烯-金IRE的能力。使用循环伏安法和ATR-SEIRAS对这些接枝物进行了表征,清楚地显示了4-NBD的1520和1350 cm NO伸缩振动以及4-氨基-TEMPO的1240 cm C-C、C-C-H和N-Ȯ伸缩振动。在石墨烯上成功接枝未显示出SEIRAS效应,而在金上接枝对于TEMPO不稳定,并且对于4-NBD的分辨率比在石墨烯-金上差,突出了我们方法的独特性。石墨烯-金IRE擅长解析氧化还原转变的光谱响应,明确证明了对石墨电极表面过程的实时检测。这项工作为用于传感、能量存储、电催化和环境应用的碳电极的实时光谱电化学研究提供了丰富的未来方向。