Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universitat de València, Torre A, Lab 5.05, Ave Fernando Abril Martorell 106, 46026, Valencia, Spain.
Departamento de Fisiología, Facultad de Farmacia, Universitat de València, Ave Vicent Andrés Estellés s/n, Burjassot, 46100, Valencia, Spain.
Mol Neurobiol. 2021 Jan;58(1):408-423. doi: 10.1007/s12035-020-02115-w. Epub 2020 Sep 22.
Despite the promising neuroprotective effects of uric acid (UA) in acute ischemic stroke, the seemingly pleiotropic underlying mechanisms are not completely understood. Recent evidence points to transcription factors as UA targets. To gain insight into the UA mechanism of action, we investigated its effects on pertinent biomarkers for the most relevant features of ischemic stroke pathophysiology: (1) oxidative stress (antioxidant enzyme mRNAs and MDA), (2) neuroinflammation (cytokine and Socs3 mRNAs, STAT3, NF-κB p65, and reactive microglia), (3) brain swelling (Vegfa, Mmp9, and Timp1 mRNAs), and (4) apoptotic cell death (Bcl-2, Bax, caspase-3, and TUNEL-positive cells). Adult male Wistar rats underwent intraluminal filament transient middle cerebral artery occlusion (tMCAO) and received UA (16 mg/kg) or vehicle (Locke's buffer) i.v. at 20 min reperfusion. The outcome measures were neurofunctional deficit, infarct, and edema. UA treatment reduced cortical infarct and brain edema, as well as neurofunctional impairment. In brain cortex, increased UA: (1) reduced tMCAO-induced increases in Vegfa and Mmp9/Timp1 ratio expressions; (2) induced Sod2 and Cat expressions and reduced MDA levels; (3) induced Il6 expression, upregulated STAT3 and NF-κB p65 phosphorylation, induced Socs3 expression, and inhibited microglia activation; and (4) ameliorated the Bax/Bcl-2 ratio and induced a reduction in caspase-3 cleavage as well as in TUNEL-positive cell counts. In conclusion, the mechanism for morphological and functional neuroprotection by UA in ischemic stroke is multifaceted, since it is associated to activation of the IL-6/STAT3 pathway, attenuation of edematogenic VEGF-A/MMP-9 signaling, and modulation of relevant mediators of oxidative stress, neuroinflammation, and apoptotic cell death.
尽管尿酸 (UA) 在急性缺血性中风中具有有前景的神经保护作用,但潜在的多效性机制尚不完全清楚。最近的证据表明转录因子是 UA 的靶标。为了深入了解 UA 的作用机制,我们研究了它对缺血性中风病理生理学中最相关特征的相关生物标志物的影响:(1) 氧化应激(抗氧化酶 mRNA 和 MDA),(2) 神经炎症(细胞因子和 Socs3 mRNA、STAT3、NF-κB p65 和反应性小胶质细胞),(3) 脑水肿(Vegfa、Mmp9 和 Timp1 mRNA),和 (4) 细胞凋亡(Bcl-2、Bax、caspase-3 和 TUNEL 阳性细胞)。成年雄性 Wistar 大鼠接受管腔内线栓短暂性大脑中动脉闭塞 (tMCAO),并在再灌注 20 分钟时接受 UA(16mg/kg)或载体(Locke 缓冲液)静脉注射。测定的结果是神经功能缺陷、梗塞和水肿。UA 治疗减少皮质梗塞和脑水肿,以及神经功能损伤。在大脑皮质中,增加的 UA:(1) 减少 tMCAO 诱导的 Vegfa 和 Mmp9/Timp1 比值表达的增加;(2) 诱导 Sod2 和 Cat 表达并降低 MDA 水平;(3) 诱导 Il6 表达,上调 STAT3 和 NF-κB p65 磷酸化,诱导 Socs3 表达,并抑制小胶质细胞激活;(4) 改善 Bax/Bcl-2 比值,并诱导 caspase-3 切割减少以及 TUNEL 阳性细胞计数减少。总之,UA 在缺血性中风中具有形态和功能神经保护的机制是多方面的,因为它与 IL-6/STAT3 途径的激活、抑制血管生成 VEGF-A/MMP-9 信号传导以及调节氧化应激、神经炎症和细胞凋亡的相关介质有关。