Suppr超能文献

用于糖尿病患者血糖智能手机辅助预测监测的Diabits应用程序:回顾性观察研究。

The Diabits App for Smartphone-Assisted Predictive Monitoring of Glycemia in Patients With Diabetes: Retrospective Observational Study.

作者信息

Kriventsov Stan, Lindsey Alexander, Hayeri Amir

机构信息

Bio Conscious Technologies Inc, Vancouver, BC, Canada.

出版信息

JMIR Diabetes. 2020 Sep 22;5(3):e18660. doi: 10.2196/18660.

Abstract

BACKGROUND

Diabetes mellitus, which causes dysregulation of blood glucose in humans, is a major public health challenge. Patients with diabetes must monitor their glycemic levels to keep them in a healthy range. This task is made easier by using continuous glucose monitoring (CGM) devices and relaying their output to smartphone apps, thus providing users with real-time information on their glycemic fluctuations and possibly predicting future trends.

OBJECTIVE

This study aims to discuss various challenges of predictive monitoring of glycemia and examines the accuracy and blood glucose control effects of Diabits, a smartphone app that helps patients with diabetes monitor and manage their blood glucose levels in real time.

METHODS

Using data from CGM devices and user input, Diabits applies machine learning techniques to create personalized patient models and predict blood glucose fluctuations up to 60 min in advance. These predictions give patients an opportunity to take pre-emptive action to maintain their blood glucose values within the reference range. In this retrospective observational cohort study, the predictive accuracy of Diabits and the correlation between daily use of the app and blood glucose control metrics were examined based on real app users' data. Moreover, the accuracy of predictions on the 2018 Ohio T1DM (type 1 diabetes mellitus) data set was calculated and compared against other published results.

RESULTS

On the basis of more than 6.8 million data points, 30-min Diabits predictions evaluated using Parkes Error Grid were found to be 86.89% (5,963,930/6,864,130) clinically accurate (zone A) and 99.56% (6,833,625/6,864,130) clinically acceptable (zones A and B), whereas 60-min predictions were 70.56% (4,843,605/6,864,130) clinically accurate and 97.49% (6,692,165/6,864,130) clinically acceptable. By analyzing daily use statistics and CGM data for the 280 most long-standing users of Diabits, it was established that under free-living conditions, many common blood glucose control metrics improved with increased frequency of app use. For instance, the average blood glucose for the days these users did not interact with the app was 154.0 (SD 47.2) mg/dL, with 67.52% of the time spent in the healthy 70 to 180 mg/dL range. For days with 10 or more Diabits sessions, the average blood glucose decreased to 141.6 (SD 42.0) mg/dL (P<.001), whereas the time in euglycemic range increased to 74.28% (P<.001). On the Ohio T1DM data set of 6 patients with type 1 diabetes, 30-min predictions of the base Diabits model had an average root mean square error of 18.68 (SD 2.19) mg/dL, which is an improvement over the published state-of-the-art results for this data set.

CONCLUSIONS

Diabits accurately predicts future glycemic fluctuations, potentially making it easier for patients with diabetes to maintain their blood glucose in the reference range. Furthermore, an improvement in glucose control was observed on days with more frequent Diabits use.

摘要

背景

糖尿病导致人体血糖调节失调,是一项重大的公共卫生挑战。糖尿病患者必须监测其血糖水平,使其保持在健康范围内。使用连续血糖监测(CGM)设备并将其输出结果传输到智能手机应用程序,可使这项任务变得更加轻松,从而为用户提供有关其血糖波动的实时信息,并有可能预测未来趋势。

目的

本研究旨在探讨血糖预测监测的各种挑战,并检验Diabits这款智能手机应用程序在预测血糖方面的准确性以及对血糖控制的效果,该应用程序可帮助糖尿病患者实时监测和管理其血糖水平。

方法

Diabits利用来自CGM设备的数据和用户输入,应用机器学习技术创建个性化的患者模型,并提前60分钟预测血糖波动。这些预测使患者有机会采取预防措施,将血糖值维持在参考范围内。在这项回顾性观察队列研究中,基于真实应用程序用户的数据,检验了Diabits的预测准确性以及该应用程序的日常使用与血糖控制指标之间的相关性。此外,还计算了Diabits在2018年俄亥俄州1型糖尿病(T1DM)数据集上的预测准确性,并与其他已发表的结果进行了比较。

结果

基于超过680万个数据点,使用帕克斯误差网格评估的Diabits 30分钟预测结果显示,临床准确率(A区)为86.89%(5,963,930/6,864,130),临床可接受率(A区和B区)为99.56%(6,833,625/6,864,130);而60分钟预测的临床准确率为70.56%(4,843,605/6,864,130),临床可接受率为97.49%(6,692,165/6,864,130)。通过分析Diabits最长期使用的280名用户的日常使用统计数据和CGM数据,确定在自由生活条件下,随着应用程序使用频率的增加,许多常见的血糖控制指标都有所改善。例如,这些用户在未使用该应用程序的日子里,平均血糖为154.0(标准差47.2)mg/dL,其中67.52%的时间血糖处于70至180 mg/dL的健康范围内。在使用Diabits 10次或更多次的日子里,平均血糖降至141.6(标准差42.0)mg/dL(P<0.001),而血糖正常范围的时间增加到74.28%(P<0.001)。在6名1型糖尿病患者的俄亥俄州T1DM数据集中,Diabits基础模型的30分钟预测平均均方根误差为18.68(标准差2.19)mg/dL,这比该数据集已发表的最新结果有所改善。

结论

Diabits能够准确预测未来的血糖波动,可能会使糖尿病患者更容易将血糖维持在参考范围内。此外,观察到在更频繁使用Diabits的日子里,血糖控制有所改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c2/7539161/72a3c211dd66/diabetes_v5i3e18660_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验