Suppr超能文献

利用预测型 APP 提升连续血糖监测能力

Enhancing the Capabilities of Continuous Glucose Monitoring With a Predictive App.

机构信息

Roche Diabetes Care Spain SL., Barcelona, Spain.

Roche Diabetes Care Deutschland GmbH, Mannheim, Germany.

出版信息

J Diabetes Sci Technol. 2024 Sep;18(5):1014-1026. doi: 10.1177/19322968241267818. Epub 2024 Aug 19.

Abstract

BACKGROUND

Despite abundant evidence demonstrating the benefits of continuous glucose monitoring (CGM) in diabetes management, a significant proportion of people using this technology still struggle to achieve glycemic targets. To address this challenge, we propose the Accu-Chek SmartGuide Predict app, an innovative CGM digital companion that incorporates a suite of advanced glucose predictive functionalities aiming to inform users earlier about acute glycemic situations.

METHODS

The app's functionalities, powered by three machine learning models, include a two-hour glucose forecast, a 30-minute low glucose detection, and a nighttime low glucose prediction for bedtime interventions. Evaluation of the models' performance included three data sets, comprising subjects with T1D on MDI (n = 21), subjects with type 2 diabetes (T2D) on MDI (n = 59), and subjects with T1D on insulin pump therapy (n = 226).

RESULTS

On an aggregated data set, the two-hour glucose prediction model, at a forecasting horizon of 30, 45, 60, and 120 minutes, achieved a percentage of data points in zones A and B of Consensus Error Grid of: 99.8%, 99.3%, 98.7%, and 96.3%, respectively. The 30-minute low glucose prediction model achieved an accuracy, sensitivity, specificity, mean lead time, and area under the receiver operating characteristic curve (ROC AUC) of: 98.9%, 95.2%, 98.9%, 16.2 minutes, and 0.958, respectively. The nighttime low glucose prediction model achieved an accuracy, sensitivity, specificity, and ROC AUC of: 86.5%, 55.3%, 91.6%, and 0.859, respectively.

CONCLUSIONS

The consistency of the performance of the three predictive models when evaluated on different cohorts of subjects with T1D and T2D on different insulin therapies, including real-world data, offers reassurance for real-world efficacy.

摘要

背景

尽管有大量证据表明连续血糖监测(CGM)在糖尿病管理中的益处,但仍有相当一部分使用该技术的人难以达到血糖目标。为了解决这一挑战,我们提出了 Accu-Chek SmartGuide Predict 应用程序,这是一款创新的 CGM 数字伴侣,它集成了一系列先进的血糖预测功能,旨在更早地提醒用户急性血糖情况。

方法

该应用程序的功能由三个机器学习模型提供支持,包括两小时血糖预测、30 分钟低血糖检测和睡前干预的夜间低血糖预测。对模型性能的评估包括三个数据集,包括接受 MDI 治疗的 1 型糖尿病患者(n=21)、接受 MDI 治疗的 2 型糖尿病患者(n=59)和接受胰岛素泵治疗的 1 型糖尿病患者(n=226)。

结果

在汇总数据集上,两小时血糖预测模型在预测时间为 30、45、60 和 120 分钟时,在共识误差网格的 A 和 B 区的数据点百分比分别达到:99.8%、99.3%、98.7%和 96.3%。30 分钟低血糖预测模型的准确性、灵敏度、特异性、平均领先时间和接收者操作特征曲线(ROC AUC)分别为:98.9%、95.2%、98.9%、16.2 分钟和 0.958。夜间低血糖预测模型的准确性、灵敏度、特异性和 ROC AUC 分别为:86.5%、55.3%、91.6%和 0.859。

结论

当在接受不同胰岛素治疗的 1 型和 2 型糖尿病患者的不同队列中评估时,这三个预测模型的性能表现一致,包括真实世界的数据,这为实际疗效提供了保证。

相似文献

1
Enhancing the Capabilities of Continuous Glucose Monitoring With a Predictive App.利用预测型 APP 提升连续血糖监测能力
J Diabetes Sci Technol. 2024 Sep;18(5):1014-1026. doi: 10.1177/19322968241267818. Epub 2024 Aug 19.
5
Continuous glucose monitoring systems for type 1 diabetes mellitus.1型糖尿病的连续血糖监测系统
Cochrane Database Syst Rev. 2012 Jan 18;1(1):CD008101. doi: 10.1002/14651858.CD008101.pub2.

引用本文的文献

4
Predicting Glucose Values: A New Era for Continuous Glucose Monitoring.预测血糖值:连续血糖监测的新时代。
J Diabetes Sci Technol. 2024 Sep;18(5):1000-1003. doi: 10.1177/19322968241271925. Epub 2024 Aug 19.
5
Clinical Usage and Potential Benefits of a Continuous Glucose Monitoring Predict App.连续血糖监测预测 APP 的临床应用及潜在获益
J Diabetes Sci Technol. 2024 Sep;18(5):1009-1013. doi: 10.1177/19322968241268353. Epub 2024 Aug 19.
8
The Promise of Hypoglycemia Risk Prediction.低血糖风险预测的前景
J Diabetes Sci Technol. 2024 Sep;18(5):1061-1062. doi: 10.1177/19322968241267778. Epub 2024 Aug 19.

本文引用的文献

1
Clinical Usage and Potential Benefits of a Continuous Glucose Monitoring Predict App.连续血糖监测预测 APP 的临床应用及潜在获益
J Diabetes Sci Technol. 2024 Sep;18(5):1009-1013. doi: 10.1177/19322968241268353. Epub 2024 Aug 19.
5
7. Diabetes Technology: Standards of Care in Diabetes-2024.7. 糖尿病技术:2024年糖尿病护理标准
Diabetes Care. 2024 Jan 1;47(Suppl 1):S126-S144. doi: 10.2337/dc24-S007.
9
Continuous Glucose Monitoring and Bolus Calculators: A Good Combination.持续葡萄糖监测与大剂量计算器:绝佳组合。
J Diabetes Sci Technol. 2024 Jul;18(4):761-763. doi: 10.1177/19322968231204371. Epub 2023 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验