Roche Diabetes Care Spain SL., Barcelona, Spain.
Roche Diabetes Care Deutschland GmbH, Mannheim, Germany.
J Diabetes Sci Technol. 2024 Sep;18(5):1014-1026. doi: 10.1177/19322968241267818. Epub 2024 Aug 19.
Despite abundant evidence demonstrating the benefits of continuous glucose monitoring (CGM) in diabetes management, a significant proportion of people using this technology still struggle to achieve glycemic targets. To address this challenge, we propose the Accu-Chek SmartGuide Predict app, an innovative CGM digital companion that incorporates a suite of advanced glucose predictive functionalities aiming to inform users earlier about acute glycemic situations.
The app's functionalities, powered by three machine learning models, include a two-hour glucose forecast, a 30-minute low glucose detection, and a nighttime low glucose prediction for bedtime interventions. Evaluation of the models' performance included three data sets, comprising subjects with T1D on MDI (n = 21), subjects with type 2 diabetes (T2D) on MDI (n = 59), and subjects with T1D on insulin pump therapy (n = 226).
On an aggregated data set, the two-hour glucose prediction model, at a forecasting horizon of 30, 45, 60, and 120 minutes, achieved a percentage of data points in zones A and B of Consensus Error Grid of: 99.8%, 99.3%, 98.7%, and 96.3%, respectively. The 30-minute low glucose prediction model achieved an accuracy, sensitivity, specificity, mean lead time, and area under the receiver operating characteristic curve (ROC AUC) of: 98.9%, 95.2%, 98.9%, 16.2 minutes, and 0.958, respectively. The nighttime low glucose prediction model achieved an accuracy, sensitivity, specificity, and ROC AUC of: 86.5%, 55.3%, 91.6%, and 0.859, respectively.
The consistency of the performance of the three predictive models when evaluated on different cohorts of subjects with T1D and T2D on different insulin therapies, including real-world data, offers reassurance for real-world efficacy.
尽管有大量证据表明连续血糖监测(CGM)在糖尿病管理中的益处,但仍有相当一部分使用该技术的人难以达到血糖目标。为了解决这一挑战,我们提出了 Accu-Chek SmartGuide Predict 应用程序,这是一款创新的 CGM 数字伴侣,它集成了一系列先进的血糖预测功能,旨在更早地提醒用户急性血糖情况。
该应用程序的功能由三个机器学习模型提供支持,包括两小时血糖预测、30 分钟低血糖检测和睡前干预的夜间低血糖预测。对模型性能的评估包括三个数据集,包括接受 MDI 治疗的 1 型糖尿病患者(n=21)、接受 MDI 治疗的 2 型糖尿病患者(n=59)和接受胰岛素泵治疗的 1 型糖尿病患者(n=226)。
在汇总数据集上,两小时血糖预测模型在预测时间为 30、45、60 和 120 分钟时,在共识误差网格的 A 和 B 区的数据点百分比分别达到:99.8%、99.3%、98.7%和 96.3%。30 分钟低血糖预测模型的准确性、灵敏度、特异性、平均领先时间和接收者操作特征曲线(ROC AUC)分别为:98.9%、95.2%、98.9%、16.2 分钟和 0.958。夜间低血糖预测模型的准确性、灵敏度、特异性和 ROC AUC 分别为:86.5%、55.3%、91.6%和 0.859。
当在接受不同胰岛素治疗的 1 型和 2 型糖尿病患者的不同队列中评估时,这三个预测模型的性能表现一致,包括真实世界的数据,这为实际疗效提供了保证。