Suppr超能文献

基于图像的脑疾病识别与分类的最新技术:综述。

Image-based state-of-the-art techniques for the identification and classification of brain diseases: a review.

机构信息

Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China.

ATR Key Laboratory, Shenzhen University, Shenzhen, China.

出版信息

Med Biol Eng Comput. 2020 Nov;58(11):2603-2620. doi: 10.1007/s11517-020-02256-z. Epub 2020 Sep 22.

Abstract

Detection and classification methods have a vital and important role in identifying brain diseases. Timely detection and classification of brain diseases enable an accurate identification and effective management of brain impairment. Brain disorders are commonly most spreadable diseases and the diagnosing process is time-consuming and highly expensive. There is an utmost need to develop effective and advantageous methods for brain diseases detection and characterization. Magnetic resonance imaging (MRI), computed tomography (CT), and other various brain imaging scans are used to identify different brain diseases and disorders. Brain imaging scans are the efficient tool to understand the anatomical changes in brain in fast and accurate manner. These different brain imaging scans used with segmentation techniques and along with machine learning and deep learning techniques give maximum accuracy and efficiency. This paper focuses on different conventional approaches, machine learning and deep learning techniques used for the detection, and classification of brain diseases and abnormalities. This paper also summarizes the research gap and problems in the existing techniques used for detection and classification of brain disorders. Comparison and evaluation of different machine learning and deep learning techniques in terms of efficiency and accuracy are also highlighted in this paper. Furthermore, different brain diseases like leukoariaosis, Alzheimer's, Parkinson's, and Wilson's disorder are studied in the scope of machine learning and deep learning techniques.

摘要

检测和分类方法在识别脑部疾病方面起着至关重要的作用。及时检测和分类脑部疾病可以准确识别和有效管理脑损伤。脑部疾病通常是最具传染性的疾病,诊断过程既耗时又昂贵。因此,迫切需要开发有效的脑部疾病检测和特征描述方法。磁共振成像(MRI)、计算机断层扫描(CT)和其他各种脑部成像扫描用于识别不同的脑部疾病和障碍。脑部成像扫描是一种高效的工具,可以快速准确地了解大脑的解剖结构变化。这些不同的脑部成像扫描与分割技术结合使用,并结合机器学习和深度学习技术,可以提供最大的准确性和效率。本文重点介绍了用于检测和分类脑部疾病和异常的不同传统方法、机器学习和深度学习技术。本文还总结了现有用于脑部疾病检测和分类的技术存在的研究差距和问题。本文还强调了不同机器学习和深度学习技术在效率和准确性方面的比较和评估。此外,还研究了机器学习和深度学习技术在白质病变、阿尔茨海默病、帕金森病和威尔逊病等不同脑部疾病中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验