Suppr超能文献

从 MRI 图像中检测脑肿瘤的各种机器学习技术综述。

A Review of Various Machine Learning Techniques for Brain Tumor Detection from MRI Images.

机构信息

Department of Mathematics, Bioinformatics and Computer Application, (Branch: Computational and Systems Biology), Maulana Azad National Institute of Technology, Bhopal, India.

出版信息

Curr Med Imaging. 2020;16(8):937-945. doi: 10.2174/1573405615666190903144419.

Abstract

BACKGROUND

This paper endeavors to identify an expedient approach for the detection of the brain tumor in MRI images. The detection of tumor is based on i) review of the machine learning approach for the identification of brain tumor and ii) review of a suitable approach for brain tumor detection.

DISCUSSION

This review focuses on different imaging techniques such as X-rays, PET, CT- Scan, and MRI. This survey identifies a different approach with better accuracy for tumor detection. This further includes the image processing method. In most applications, machine learning shows better performance than manual segmentation of the brain tumors from MRI images as it is a difficult and time-consuming task. For fast and better computational results, radiology used a different approach with MRI, CT-scan, X-ray, and PET. Furthermore, summarizing the literature, this paper also provides a critical evaluation of the surveyed literature which reveals new facets of research.

CONCLUSION

The problem faced by the researchers during brain tumor detection techniques and machine learning applications for clinical settings have also been discussed.

摘要

背景

本文旨在寻找一种在 MRI 图像中检测脑瘤的便捷方法。肿瘤的检测基于以下两点:1)对基于机器学习的脑瘤识别方法进行回顾;2)对一种合适的脑瘤检测方法进行回顾。

讨论

本综述重点关注了 X 射线、PET、CT 扫描和 MRI 等不同的成像技术。该研究确定了一种具有更高准确性的不同检测方法。进一步地,该方法包括图像处理方法。在大多数应用中,与手动分割 MRI 图像中的脑瘤相比,机器学习显示出更好的性能,因为这是一项困难且耗时的任务。为了获得更快更好的计算结果,放射科采用了不同的方法,包括 MRI、CT 扫描、X 射线和 PET。此外,本文还对所综述的文献进行了批判性评估,揭示了研究的新方面。

结论

在脑肿瘤检测技术和机器学习应用于临床环境中,研究人员所面临的问题也得到了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验