Suppr超能文献

深度学习算法与放射解读在健康筛查人群中对胸部 X 光片肺癌检测的性能比较。

Performance of a Deep Learning Algorithm Compared with Radiologic Interpretation for Lung Cancer Detection on Chest Radiographs in a Health Screening Population.

机构信息

From the Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea (J.H.L., H.K., E.J.H., J.M.G., C.M.P.); Department of Radiology, Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea (H.Y.S.); and Lunit Inc, Seoul, Korea (S.P.).

出版信息

Radiology. 2020 Dec;297(3):687-696. doi: 10.1148/radiol.2020201240. Epub 2020 Sep 22.

Abstract

Background The performance of a deep learning algorithm for lung cancer detection on chest radiographs in a health screening population is unknown. Purpose To validate a commercially available deep learning algorithm for lung cancer detection on chest radiographs in a health screening population. Materials and Methods Out-of-sample testing of a deep learning algorithm was retrospectively performed using chest radiographs from individuals undergoing a comprehensive medical check-up between July 2008 and December 2008 (validation test). To evaluate the algorithm performance for visible lung cancer detection, the area under the receiver operating characteristic curve (AUC) and diagnostic measures, including sensitivity and false-positive rate (FPR), were calculated. The algorithm performance was compared with that of radiologists using the McNemar test and the Moskowitz method. Additionally, the deep learning algorithm was applied to a screening cohort undergoing chest radiography between January 2008 and December 2012, and its performances were calculated. Results In a validation test comprising 10 285 radiographs from 10 202 individuals (mean age, 54 years ± 11 [standard deviation]; 5857 men) with 10 radiographs of visible lung cancers, the algorithm's AUC was 0.99 (95% confidence interval: 0.97, 1), and it showed comparable sensitivity (90% [nine of 10 radiographs]) to that of the radiologists (60% [six of 10 radiographs]; = .25) with a higher FPR (3.1% [319 of 10 275 radiographs] vs 0.3% [26 of 10 275 radiographs]; < .001). In the screening cohort of 100 525 chest radiographs from 50 070 individuals (mean age, 53 years ± 11; 28 090 men) with 47 radiographs of visible lung cancers, the algorithm's AUC was 0.97 (95% confidence interval: 0.95, 0.99), and its sensitivity and FPR were 83% (39 of 47 radiographs) and 3% (2999 of 100 478 radiographs), respectively. Conclusion A deep learning algorithm detected lung cancers on chest radiographs with a performance comparable to that of radiologists, which will be helpful for radiologists in healthy populations with a low prevalence of lung cancer. © RSNA, 2020 See also the editorial by Armato in this issue.

摘要

背景 深度学习算法在胸部 X 线片筛查人群中用于肺癌检测的性能尚不清楚。目的 验证一种商用深度学习算法在健康筛查人群中胸部 X 线片肺癌检测的性能。材料与方法 使用 2008 年 7 月至 12 月间进行全面医学检查的个体的胸部 X 线片进行深度学习算法的回顾性测试(验证测试)。为了评估算法对可见肺癌检测的性能,计算了受试者工作特征曲线下面积(AUC)和诊断指标,包括敏感性和假阳性率(FPR)。使用 McNemar 检验和 Moskowitz 方法比较了算法和放射科医生的性能。此外,还将深度学习算法应用于 2008 年 1 月至 2012 年 12 月期间进行胸部 X 线摄影的筛查队列,并计算其性能。结果 在一项包含 10202 名个体的 10285 张 X 线片(平均年龄,54 岁±11[标准差];5857 名男性)的验证测试中,10 张可见肺癌 X 线片中,算法的 AUC 为 0.99(95%置信区间:0.97,1),其敏感性与放射科医生相当(90%[10 张 X 线片中 9 张]),而 FPR 较高(3.1%[10275 张 X 线片中 319 张]比 0.3%[10275 张 X 线片中 26 张];<.001)。在一项纳入 50070 名个体的 100525 张胸部 X 线片的筛查队列中(平均年龄,53 岁±11;28090 名男性),47 张可见肺癌 X 线片中,算法的 AUC 为 0.97(95%置信区间:0.95,0.99),其敏感性和 FPR 分别为 83%(47 张 X 线片中 39 张)和 3%(100478 张 X 线片中 2999 张)。结论 深度学习算法在胸部 X 线片上检测肺癌的性能与放射科医生相当,这将有助于放射科医生在肺癌发病率较低的健康人群中进行诊断。 ©2020 RSNA,见本期 Armato 编辑评论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验