文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一项系统评价:人工智能在肺癌筛查中对胸部X线片上肺结节检测的作用

A Systematic Review: The Role of Artificial Intelligence in Lung Cancer Screening in Detecting Lung Nodules on Chest X-Rays.

作者信息

Megat Ramli Puteri Norliza, Aizuddin Azimatun Noor, Ahmad Norfazilah, Abdul Hamid Zuhanis, Ismail Khairil Idham

机构信息

Institut Kanser Negara, Ministry of Health, Putrajaya 62250, Malaysia.

Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Wilayah Persekutuan Kuala Lumpur, Malaysia.

出版信息

Diagnostics (Basel). 2025 Jan 22;15(3):246. doi: 10.3390/diagnostics15030246.


DOI:10.3390/diagnostics15030246
PMID:39941176
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11817343/
Abstract

Lung cancer remains one of the leading causes of cancer-related deaths worldwide. Artificial intelligence (AI) holds significant potential roles in enhancing the detection of lung nodules through chest X-ray (CXR), enabling earlier diagnosis and improved outcomes. : Papers were identified through a comprehensive search of the Web of Science (WOS), Scopus, and Ovid Medline databases for publications dated between 2020 and 2024. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 34 studies that met the inclusion criteria were selected for quality assessment and data extraction. : AI demonstrated sensitivity rates of 56.4-95.7% and specificities of 71.9-97.5%, with the area under the receiver operating characteristic (AUROC) values between 0.89 and 0.99, compared to radiologists' mean area under the curve (AUC) of 0.81. AI performed better with larger nodules (>2 cm) and solid nodules, showing higher AUC values for calcified (0.71) compared to non-calcified nodules (0.55). Performance was lower in hilar areas (30%) and lower lung fields (43.8%). A combined AI-radiologist approach improved overall detection rates, particularly benefiting less experienced readers; however, AI showed limitations in detecting ground-glass opacities (GGOs). : AI shows promise as a supplementary tool for radiologists in lung nodule detection. However, the variability in AI results across studies highlights the need for standardized assessment methods and diverse datasets for model training. Future studies should focus on developing more precise and applicable algorithms while evaluating the effectiveness and cost-efficiency of AI in lung cancer screening interventions.

摘要

肺癌仍然是全球癌症相关死亡的主要原因之一。人工智能(AI)在通过胸部X光(CXR)增强肺结节检测方面具有巨大的潜在作用,能够实现早期诊断并改善治疗结果。:通过全面检索科学网(WOS)、Scopus和Ovid Medline数据库,确定了2020年至2024年期间发表的论文。按照系统评价和Meta分析的首选报告项目(PRISMA)指南,选择了34项符合纳入标准的研究进行质量评估和数据提取。:与放射科医生的曲线下平均面积(AUC)为0.81相比,AI的灵敏度率为56.4-95.7%,特异性为71.9-97.5%,受试者工作特征曲线(AUROC)值在0.89至0.99之间。AI对较大结节(>2 cm)和实性结节的表现更好,钙化结节的AUC值(0.71)高于非钙化结节(0.55)。肺门区域(30%)和下肺野(43.8%)的表现较低。AI与放射科医生相结合的方法提高了总体检测率,尤其使经验不足的读者受益;然而,AI在检测磨玻璃影(GGO)方面存在局限性。:AI有望成为放射科医生检测肺结节的辅助工具。然而,不同研究中AI结果的可变性凸显了对标准化评估方法和用于模型训练的多样化数据集的需求。未来的研究应专注于开发更精确和适用的算法,同时评估AI在肺癌筛查干预中的有效性和成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8105/11817343/742c4d606385/diagnostics-15-00246-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8105/11817343/742c4d606385/diagnostics-15-00246-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8105/11817343/742c4d606385/diagnostics-15-00246-g001.jpg

相似文献

[1]
A Systematic Review: The Role of Artificial Intelligence in Lung Cancer Screening in Detecting Lung Nodules on Chest X-Rays.

Diagnostics (Basel). 2025-1-22

[2]
Independent evaluation of the accuracy of 5 artificial intelligence software for detecting lung nodules on chest X-rays.

Quant Imaging Med Surg. 2024-8-1

[3]
Effect of Artificial Intelligence as a Second Reader on the Lung Nodule Detection and Localization Accuracy of Radiologists and Non-radiology Physicians in Chest Radiographs: A Multicenter Reader Study.

Acad Radiol. 2025-3

[4]
An Artificial Intelligence-Based Chest X-ray Model on Human Nodule Detection Accuracy From a Multicenter Study.

JAMA Netw Open. 2021-12-1

[5]
Artificial intelligence software for analysing chest X-ray images to identify suspected lung cancer: an evidence synthesis early value assessment.

Health Technol Assess. 2024-8

[6]
Performance of an AI based CAD system in solid lung nodule detection on chest phantom radiographs compared to radiology residents and fellow radiologists.

J Thorac Dis. 2021-5

[7]
Retrospectively assessing evaluation and management of artificial-intelligence detected nodules on uninterpreted chest radiographs in the era of radiologists shortage.

Eur J Radiol. 2024-1

[8]
[Performance of Deep-learning-based Artificial Intelligence on Detection of Pulmonary Nodules in Chest CT].

Zhongguo Fei Ai Za Zhi. 2019-6-20

[9]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[10]
The Effects of Artificial Intelligence Assistance on the Radiologists' Assessment of Lung Nodules on CT Scans: A Systematic Review.

J Clin Med. 2023-5-18

引用本文的文献

[1]
Artificial intelligence software to detect small hepatic lesions on hepatobiliary-phase images using multiscale sampling.

Jpn J Radiol. 2025-8-29

[2]
The legend of the response evaluation criteria in solid tumors: A historical overview.

Cancer. 2025-9-1

本文引用的文献

[1]
Artificial intelligence-assisted double reading of chest radiographs to detect clinically relevant missed findings: a two-centre evaluation.

Eur Radiol. 2024-9

[2]
Can Artificial Intelligence Replace Humans for Detecting Lung Tumors on Radiographs? An Examination of Resected Malignant Lung Tumors.

J Pers Med. 2024-1-31

[3]
Comparison of Commercial AI Software Performance for Radiograph Lung Nodule Detection and Bone Age Prediction.

Radiology. 2024-1

[4]
Using AI to Improve Radiologist Performance in Detection of Abnormalities on Chest Radiographs.

Radiology. 2023-12

[5]
Retrospectively assessing evaluation and management of artificial-intelligence detected nodules on uninterpreted chest radiographs in the era of radiologists shortage.

Eur J Radiol. 2024-1

[6]
Clinical outcomes and actual consequence of lung nodules incidentally detected on chest radiographs by artificial intelligence.

Sci Rep. 2023-11-13

[7]
Evaluating the performance of artificial intelligence software for lung nodule detection on chest radiographs in a retrospective real-world UK population.

BMJ Open. 2023-11-8

[8]
Development of a novel artificial intelligence algorithm to detect pulmonary nodules on chest radiography.

Fukushima J Med Sci. 2023-11-15

[9]
The diagnostic performance and clinical value of deep learning-based nodule detection system concerning influence of location of pulmonary nodule.

Insights Imaging. 2023-9-19

[10]
Deep learning-based automatic detection for pulmonary nodules on chest radiographs: The relationship with background lung condition, nodule characteristics, and location.

Eur J Radiol. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索