Megat Ramli Puteri Norliza, Aizuddin Azimatun Noor, Ahmad Norfazilah, Abdul Hamid Zuhanis, Ismail Khairil Idham
Institut Kanser Negara, Ministry of Health, Putrajaya 62250, Malaysia.
Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Wilayah Persekutuan Kuala Lumpur, Malaysia.
Diagnostics (Basel). 2025 Jan 22;15(3):246. doi: 10.3390/diagnostics15030246.
Lung cancer remains one of the leading causes of cancer-related deaths worldwide. Artificial intelligence (AI) holds significant potential roles in enhancing the detection of lung nodules through chest X-ray (CXR), enabling earlier diagnosis and improved outcomes. : Papers were identified through a comprehensive search of the Web of Science (WOS), Scopus, and Ovid Medline databases for publications dated between 2020 and 2024. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 34 studies that met the inclusion criteria were selected for quality assessment and data extraction. : AI demonstrated sensitivity rates of 56.4-95.7% and specificities of 71.9-97.5%, with the area under the receiver operating characteristic (AUROC) values between 0.89 and 0.99, compared to radiologists' mean area under the curve (AUC) of 0.81. AI performed better with larger nodules (>2 cm) and solid nodules, showing higher AUC values for calcified (0.71) compared to non-calcified nodules (0.55). Performance was lower in hilar areas (30%) and lower lung fields (43.8%). A combined AI-radiologist approach improved overall detection rates, particularly benefiting less experienced readers; however, AI showed limitations in detecting ground-glass opacities (GGOs). : AI shows promise as a supplementary tool for radiologists in lung nodule detection. However, the variability in AI results across studies highlights the need for standardized assessment methods and diverse datasets for model training. Future studies should focus on developing more precise and applicable algorithms while evaluating the effectiveness and cost-efficiency of AI in lung cancer screening interventions.
肺癌仍然是全球癌症相关死亡的主要原因之一。人工智能(AI)在通过胸部X光(CXR)增强肺结节检测方面具有巨大的潜在作用,能够实现早期诊断并改善治疗结果。:通过全面检索科学网(WOS)、Scopus和Ovid Medline数据库,确定了2020年至2024年期间发表的论文。按照系统评价和Meta分析的首选报告项目(PRISMA)指南,选择了34项符合纳入标准的研究进行质量评估和数据提取。:与放射科医生的曲线下平均面积(AUC)为0.81相比,AI的灵敏度率为56.4-95.7%,特异性为71.9-97.5%,受试者工作特征曲线(AUROC)值在0.89至0.99之间。AI对较大结节(>2 cm)和实性结节的表现更好,钙化结节的AUC值(0.71)高于非钙化结节(0.55)。肺门区域(30%)和下肺野(43.8%)的表现较低。AI与放射科医生相结合的方法提高了总体检测率,尤其使经验不足的读者受益;然而,AI在检测磨玻璃影(GGO)方面存在局限性。:AI有望成为放射科医生检测肺结节的辅助工具。然而,不同研究中AI结果的可变性凸显了对标准化评估方法和用于模型训练的多样化数据集的需求。未来的研究应专注于开发更精确和适用的算法,同时评估AI在肺癌筛查干预中的有效性和成本效益。
Quant Imaging Med Surg. 2024-8-1
Zhongguo Fei Ai Za Zhi. 2019-6-20
Cochrane Database Syst Rev. 2022-2-1
Fukushima J Med Sci. 2023-11-15