文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习检测系统对胸部 X 线片中多个主要发现的增值作用:一项随机交叉研究。

Added Value of Deep Learning-based Detection System for Multiple Major Findings on Chest Radiographs: A Randomized Crossover Study.

机构信息

From the R&D Center, VUNO, 507 Gangnamdae-ro, Seocho-gu, Seoul 06536, South Korea (J.S., W.B., B.P., E.J., K.H.J.); and Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea (S.P., S.M.L., J.B.S.).

出版信息

Radiology. 2021 May;299(2):450-459. doi: 10.1148/radiol.2021202818. Epub 2021 Mar 23.


DOI:10.1148/radiol.2021202818
PMID:33754828
Abstract

Background Previous studies assessing the effects of computer-aided detection on observer performance in the reading of chest radiographs used a sequential reading design that may have biased the results because of reading order or recall bias. Purpose To compare observer performance in detecting and localizing major abnormal findings including nodules, consolidation, interstitial opacity, pleural effusion, and pneumothorax on chest radiographs without versus with deep learning-based detection (DLD) system assistance in a randomized crossover design. Materials and Methods This study included retrospectively collected normal and abnormal chest radiographs between January 2016 and December 2017 (; registration no. KCT0004147) The radiographs were randomized into two groups, and six observers, including thoracic radiologists, interpreted each radiograph without and with use of a commercially available DLD system by using a crossover design with a washout period. Jackknife alternative free-response receiver operating characteristic (JAFROC) figure of merit (FOM), area under the receiver operating characteristic curve (AUC), sensitivity, specificity, false-positive findings per image, and reading times of observers with and without the DLD system were compared by using McNemar and paired tests. Results A total of 114 normal (mean patient age ± standard deviation, 51 years ± 11; 58 men) and 114 abnormal (mean patient age, 60 years ± 15; 75 men) chest radiographs were evaluated. The radiographs were randomized to two groups: group A ( = 114) and group B ( = 114). Use of the DLD system improved the observers' JAFROC FOM (from 0.90 to 0.95, = .002), AUC (from 0.93 to 0.98, = .002), per-lesion sensitivity (from 83% [822 of 990 lesions] to 89.1% [882 of 990 lesions], = .009), per-image sensitivity (from 80% [548 of 684 radiographs] to 89% [608 of 684 radiographs], = .009), and specificity (from 89.3% [611 of 684 radiographs] to 96.6% [661 of 684 radiographs], = .01) and reduced the reading time (from 10-65 seconds to 6-27 seconds, < .001). The DLD system alone outperformed the pooled observers (JAFROC FOM: 0.96 vs 0.90, respectively, = .007; AUC: 0.98 vs 0.93, = .003). Conclusion Observers including thoracic radiologists showed improved performance in the detection and localization of major abnormal findings on chest radiographs and reduced reading time with use of a deep learning-based detection system. © RSNA, 2021

摘要

背景 先前评估计算机辅助检测在胸部 X 线阅读中对观察者性能影响的研究采用了顺序阅读设计,这种设计可能会因阅读顺序或回忆偏倚而产生偏差。目的 在随机交叉设计中,比较在没有和有基于深度学习的检测(DLD)系统辅助的情况下,观察者在检测和定位包括结节、实变、间质混浊、胸腔积液和气胸在内的主要异常发现方面的表现。

材料与方法 本研究回顾性收集了 2016 年 1 月至 2017 年 12 月期间的正常和异常胸部 X 线片(注册号:KCT0004147)。将 X 线片随机分为两组,6 名观察者(包括胸部放射科医生)使用商业上可获得的 DLD 系统,以交叉设计并使用洗脱期进行无和有 DLD 系统的阅片。使用 Jackknife 替代自由响应接收者操作特征(JAFROC)优值(FOM)、接收者操作特征曲线下面积(AUC)、敏感性、特异性、每张图像的假阳性发现和有/无 DLD 系统的观察者阅读时间,比较观察者的 JAFROC FOM(从 0.90 提高到 0.95, =.002)、AUC(从 0.93 提高到 0.98, =.002)、病变检出率(从 83%(990 个病变中的 822 个)提高到 89.1%(990 个病变中的 882 个), =.009)、每张图像的检出率(从 80%(684 张 X 线片中的 548 张)提高到 89%(684 张 X 线片中的 608 张), =.009)和特异性(从 89.3%(684 张 X 线片中的 611 张)提高到 96.6%(684 张 X 线片中的 661 张), =.01),并减少了阅读时间(从 10-65 秒减少到 6-27 秒, <.001)。单独使用 DLD 系统的表现优于汇总观察者(JAFROC FOM:0.96 比 0.90, =.007;AUC:0.98 比 0.93, =.003)。

结论 包括胸部放射科医生在内的观察者在检测和定位胸部 X 线片中的主要异常发现方面表现出更好的性能,并且使用基于深度学习的检测系统可以减少阅读时间。

相似文献

[1]
Added Value of Deep Learning-based Detection System for Multiple Major Findings on Chest Radiographs: A Randomized Crossover Study.

Radiology. 2021-5

[2]
Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings.

Eur Radiol. 2020-3

[3]
Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs.

Radiology. 2018-9-25

[4]
Evaluation of a deep learning-based computer-aided detection algorithm on chest radiographs: Case-control study.

Medicine (Baltimore). 2021-4-23

[5]
Performance of a Deep Learning Algorithm Compared with Radiologic Interpretation for Lung Cancer Detection on Chest Radiographs in a Health Screening Population.

Radiology. 2020-9-22

[6]
Commercially Available Chest Radiograph AI Tools for Detecting Airspace Disease, Pneumothorax, and Pleural Effusion.

Radiology. 2023-9

[7]
Optimal matrix size of chest radiographs for computer-aided detection on lung nodule or mass with deep learning.

Eur Radiol. 2020-9

[8]
Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs.

JAMA Netw Open. 2019-3-1

[9]
Using AI to Improve Radiologist Performance in Detection of Abnormalities on Chest Radiographs.

Radiology. 2023-12

[10]
Deep Learning-based Automatic Detection Algorithm for Reducing Overlooked Lung Cancers on Chest Radiographs.

Radiology. 2020-7-21

引用本文的文献

[1]
Artificial Intelligence Analysis of Chest Radiographs for Predicting Major Adverse Events in Patients Visiting the Emergency Department With Acute Cardiopulmonary Symptoms.

Korean J Radiol. 2025-9

[2]
External Validation of an Upgraded AI Model for Screening Ileocolic Intussusception Using Pediatric Abdominal Radiographs: Multicenter Retrospective Study.

J Med Internet Res. 2025-7-8

[3]
A clinically applicable AI system for detection and diagnosis of bone metastases using CT scans.

Nat Commun. 2025-5-13

[4]
Medical machine learning operations: a framework to facilitate clinical AI development and deployment in radiology.

Eur Radiol. 2025-5-8

[5]
Application of Artificial Intelligence in Thoracic Radiology: A Narrative Review.

Tuberc Respir Dis (Seoul). 2025-4

[6]
Impact of human and artificial intelligence collaboration on workload reduction in medical image interpretation.

NPJ Digit Med. 2024-11-30

[7]
The Impact of Artificial Intelligence on Radiologists' Reading Time in Bone Age Radiograph Assessment: A Preliminary Retrospective Observational Study.

J Imaging Inform Med. 2024-11-11

[8]
Diagnostic accuracy and added value of dynamic chest radiography in detecting pulmonary embolism: A retrospective study.

Eur J Radiol Open. 2024-10-5

[9]
Can AI generate diagnostic reports for radiologist approval on CXR images? A multi-reader and multi-case observer performance study.

J Xray Sci Technol. 2024

[10]
Enhancing Radiological Diagnosis: A Comprehensive Review of Image Quality Assessment and Optimization Strategies.

Cureus. 2024-6-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索