Suppr超能文献

美国在 COVID-19 大流行期间人口统计学、司法管辖区和空间对社交距离的影响。

Demographic, jurisdictional, and spatial effects on social distancing in the United States during the COVID-19 pandemic.

机构信息

E.J. Ourso College of Business Administration, Louisiana State University, Baton Rouge, Louisiana, United States of America.

出版信息

PLoS One. 2020 Sep 22;15(9):e0239572. doi: 10.1371/journal.pone.0239572. eCollection 2020.

Abstract

Social distancing, a non-pharmaceutical tactic aimed at reducing the spread of COVID-19, can arise because individuals voluntarily distance from others to avoid contracting the disease. Alternatively, it can arise because of jurisdictional restrictions imposed by local authorities. We run reduced form models of social distancing as a function of county-level exogenous demographic variables and jurisdictional fixed effects for 49 states to assess the relative contributions of demographic and jurisdictional effects in explaining social distancing behavior. To allow for possible spatial aspects of a contagious disease, we also model the spillovers associated with demographic variables in surrounding counties as well as allow for disturbances that depend upon those in surrounding counties. We run our models weekly and examine the evolution of the estimated coefficients over time since the onset of the COVID-19 pandemic in the United States. These estimated coefficients express the revealed preferences of individuals who were able to and chose to stay at home to avoid the disease. Stay-at-home behavior measured using cell phone tracking data exhibits considerable cross-sectional variation, increasing over nine-fold from the end of January 2020 to the end of March 2020, and then decreasing by about 50% through mid-June 2020. Our estimation results show that demographic exogenous variables explain substantially more of this variation than predictions from jurisdictional fixed effects. Moreover, the explanations from demographic exogenous variables and jurisdictional fixed effects show an evolving correlation over the sample period, initially partially offsetting, and eventually reinforcing each other. Furthermore, the predicted social distance from demographic exogenous variables shows substantial spatial autoregressive dependence, indicating clustering in social distancing behavior. The increased variance of stay-at-home behavior coupled with the high level of spatial dependence can result in relatively intense hotspots and coldspots of social distance, which has implications for disease spread and mitigation.

摘要

社交距离是一种旨在减少 COVID-19 传播的非药物策略,可以由个人自愿与他人保持距离以避免感染疾病而产生,也可以由地方当局实施的管辖限制而产生。我们以县级外生人口统计学变量和管辖固定效应为函数,对 49 个州进行社交距离简化模型的回归,以评估人口统计学和管辖因素在解释社交距离行为方面的相对贡献。为了考虑传染病的可能的空间方面,我们还对周边县的人口统计学变量的溢出效应进行建模,并允许依赖周边县的干扰项。我们每周运行模型,并检查自美国 COVID-19 大流行开始以来,随着时间的推移,估计系数的演变。这些估计系数表达了那些能够选择并选择待在家里以避免疾病的个人的显示偏好。使用手机跟踪数据衡量的居家行为存在相当大的横截面差异,从 2020 年 1 月底到 2020 年 3 月底增加了九倍多,然后到 2020 年 6 月中旬减少了约 50%。我们的估计结果表明,人口统计学外生变量比管辖固定效应的预测解释了更多的这种变化。此外,人口统计学外生变量和管辖固定效应的解释在样本期间表现出不断变化的相关性,最初部分抵消,最终相互加强。此外,人口统计学外生变量预测的社交距离显示出相当大的空间自回归依赖关系,表明社交距离行为存在聚类。居家行为的方差增加加上高度的空间依赖性可能导致社交距离的热点和冷点相对集中,这对疾病的传播和缓解有影响。

相似文献

1
Demographic, jurisdictional, and spatial effects on social distancing in the United States during the COVID-19 pandemic.
PLoS One. 2020 Sep 22;15(9):e0239572. doi: 10.1371/journal.pone.0239572. eCollection 2020.
4
Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study.
Lancet Infect Dis. 2020 Nov;20(11):1247-1254. doi: 10.1016/S1473-3099(20)30553-3. Epub 2020 Jul 1.
5
Challenges in the Practice of Sexual Medicine in the Time of COVID-19 in the United Kingdom.
J Sex Med. 2020 Jul;17(7):1229-1236. doi: 10.1016/j.jsxm.2020.05.001. Epub 2020 May 14.
8
Social distancing during the COVID-19 pandemic: Staying home save lives.
Am J Emerg Med. 2020 Jul;38(7):1519-1520. doi: 10.1016/j.ajem.2020.03.063. Epub 2020 Apr 2.

引用本文的文献

1
Severe COVID-19 outcomes in pediatrics: An observational cohort analysis comparing Alpha, Delta, and Omicron variants.
Lancet Reg Health Am. 2023 Feb;18:100405. doi: 10.1016/j.lana.2022.100405. Epub 2022 Dec 1.
3
Regional poverty and infection disease: early exploratory evidence from the COVID-19 pandemic.
Ann Reg Sci. 2023;70(1):209-236. doi: 10.1007/s00168-022-01109-x. Epub 2022 Jan 25.
4
The COVID-19 Pandemic Strain: Teleworking and Health Behavior Changes in the Portuguese Context.
Healthcare (Basel). 2021 Sep 3;9(9):1151. doi: 10.3390/healthcare9091151.
5
Dueling emergencies: Flood evacuation ridesharing during the COVID-19 pandemic.
Transp Res Interdiscip Perspect. 2021 Jun;10:100352. doi: 10.1016/j.trip.2021.100352. Epub 2021 Apr 1.
6
Policy liberalism and source of news predict pandemic-related health behaviors and trust in the scientific community.
PLoS One. 2021 Jun 17;16(6):e0252670. doi: 10.1371/journal.pone.0252670. eCollection 2021.
7
Prevalence of anxiety symptom and depressive symptom among college students during COVID-19 pandemic: A meta-analysis.
J Affect Disord. 2021 Sep 1;292:242-254. doi: 10.1016/j.jad.2021.05.109. Epub 2021 Jun 4.
8
2020 trends in dental office visits during the COVID-19 pandemic.
J Am Dent Assoc. 2021 Jul;152(7):535-541.e1. doi: 10.1016/j.adaj.2021.02.016. Epub 2021 Mar 9.

本文引用的文献

1
Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities.
J Econ Dyn Control. 2022 Jul;140:104318. doi: 10.1016/j.jedc.2022.104318. Epub 2022 Jan 29.
2
The spatial econometrics of the coronavirus pandemic.
Lett Spat Resour Sci. 2020;13(3):209-218. doi: 10.1007/s12076-020-00254-1. Epub 2020 Aug 1.
3
Polarization and public health: Partisan differences in social distancing during the coronavirus pandemic.
J Public Econ. 2020 Nov;191:104254. doi: 10.1016/j.jpubeco.2020.104254. Epub 2020 Aug 6.
4
Estimating the burden of United States workers exposed to infection or disease: A key factor in containing risk of COVID-19 infection.
PLoS One. 2020 Apr 28;15(4):e0232452. doi: 10.1371/journal.pone.0232452. eCollection 2020.
5
Perceptions of the adult US population regarding the novel coronavirus outbreak.
PLoS One. 2020 Apr 17;15(4):e0231808. doi: 10.1371/journal.pone.0231808. eCollection 2020.
6
Determining the spatial effects of COVID-19 using the spatial panel data model.
Spat Stat. 2020 Aug;38:100443. doi: 10.1016/j.spasta.2020.100443. Epub 2020 Apr 7.
7
Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review.
Ann Intern Med. 2020 Jun 2;172(11):726-734. doi: 10.7326/M20-1301. Epub 2020 Apr 13.
8
Diagnostic Testing for the Novel Coronavirus.
JAMA. 2020 Apr 21;323(15):1437-1438. doi: 10.1001/jama.2020.3864.
9
Predictors of business return in New Orleans after Hurricane Katrina.
PLoS One. 2012;7(10):e47935. doi: 10.1371/journal.pone.0047935. Epub 2012 Oct 24.
10
Business return in New Orleans: decision making amid post-Katrina uncertainty.
PLoS One. 2009 Aug 26;4(8):e6765. doi: 10.1371/journal.pone.0006765.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验