Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149, Münster, Germany.
Nat Commun. 2020 Nov 4;11(1):5576. doi: 10.1038/s41467-020-19024-0.
For preventing the spread of epidemics such as the coronavirus disease COVID-19, social distancing and the isolation of infected persons are crucial. However, existing reaction-diffusion equations for epidemic spreading are incapable of describing these effects. In this work, we present an extended model for disease spread based on combining a susceptible-infected-recovered model with a dynamical density functional theory where social distancing and isolation of infected persons are explicitly taken into account. We show that the model exhibits interesting transient phase separation associated with a reduction of the number of infections, and allows for new insights into the control of pandemics.
为了预防冠状病毒疾病(COVID-19)等传染病的传播,社交隔离和感染者的隔离至关重要。然而,现有的传染病传播反应扩散方程无法描述这些影响。在这项工作中,我们提出了一种基于将易感染-感染-恢复模型与动态密度泛函理论相结合的疾病传播扩展模型,其中明确考虑了社交隔离和感染者的隔离。我们表明,该模型表现出与感染人数减少相关的有趣的瞬态相分离,并为大流行的控制提供了新的见解。