Suppr超能文献

基于动力密度泛函理论对社交隔离与传染病传播关系的建模研究

Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory.

机构信息

Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149, Münster, Germany.

出版信息

Nat Commun. 2020 Nov 4;11(1):5576. doi: 10.1038/s41467-020-19024-0.

Abstract

For preventing the spread of epidemics such as the coronavirus disease COVID-19, social distancing and the isolation of infected persons are crucial. However, existing reaction-diffusion equations for epidemic spreading are incapable of describing these effects. In this work, we present an extended model for disease spread based on combining a susceptible-infected-recovered model with a dynamical density functional theory where social distancing and isolation of infected persons are explicitly taken into account. We show that the model exhibits interesting transient phase separation associated with a reduction of the number of infections, and allows for new insights into the control of pandemics.

摘要

为了预防冠状病毒疾病(COVID-19)等传染病的传播,社交隔离和感染者的隔离至关重要。然而,现有的传染病传播反应扩散方程无法描述这些影响。在这项工作中,我们提出了一种基于将易感染-感染-恢复模型与动态密度泛函理论相结合的疾病传播扩展模型,其中明确考虑了社交隔离和感染者的隔离。我们表明,该模型表现出与感染人数减少相关的有趣的瞬态相分离,并为大流行的控制提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38bf/7643184/5f392c2bc1a0/41467_2020_19024_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验