Suppr超能文献

山羊奶营养质量软件——自动个体曲线模型拟合、形状参数计算及贝叶斯灵活性标准比较

Goat Milk Nutritional Quality Software-Automatized Individual Curve Model Fitting, Shape Parameters Calculation and Bayesian Flexibility Criteria Comparison.

作者信息

Pizarro Inostroza María Gabriela, Navas González Francisco Javier, Landi Vincenzo, León Jurado Jose Manuel, Delgado Bermejo Juan Vicente, Fernández Álvarez Javier, Martínez Martínez María Del Amparo

机构信息

Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain.

Animal Breeding Consulting, S.L., Córdoba Science and Technology Park Rabanales 21, 14071 Córdoba, Spain.

出版信息

Animals (Basel). 2020 Sep 18;10(9):1693. doi: 10.3390/ani10091693.

Abstract

SPSS syntax was described to evaluate the individual performance of 49 linear and non-linear models to fit the milk component evolution curve of 159 Murciano-Granadina does selected for genotyping analyses. Peak and persistence for protein, fat, dry matter, lactose, and somatic cell counts were evaluated using 3107 controls (3.91 ± 2.01 average lactations/goat). Best-fit (adjusted ) values (0.548, 0.374, 0.429, and 0.624 for protein, fat, dry matter, and lactose content, respectively) were reached by the five-parameter logarithmic model of Ali and Schaeffer (ALISCH), and for the three-parameter model of parabolic yield-density (PARYLDENS) for somatic cell counts (0.481). Cross-validation was performed using the Minimum Mean-Square Error (MMSE). Model comparison was performed using Residual Sum of Squares (RSS), Mean-Squared Prediction Error (MSPE), adjusted and its standard deviation (SD), Akaike (AIC), corrected Akaike (AICc), and Bayesian information criteria (BIC). The adjusted SD across individuals was around 0.2 for all models. Thirty-nine models successfully fitted the individual lactation curve for all components. Parametric and computational complexity promote variability-capturing properties, while model flexibility does not significantly ( > 0.05) improve the predictive and explanatory potential. Conclusively, ALISCH and PARYLDENS can be used to study goat milk composition genetic variability as trustable evaluation models to face future challenges of the goat dairy industry.

摘要

描述了SPSS语法,以评估49个线性和非线性模型的个体性能,以拟合为基因分型分析选择的159只穆尔西亚诺-格拉纳迪纳奶山羊的乳成分演变曲线。使用3107个对照(每只山羊平均泌乳3.91±2.01次)评估蛋白质、脂肪、干物质、乳糖和体细胞计数的峰值和持续性。Ali和Schaeffer的五参数对数模型(ALISCH)分别对蛋白质、脂肪、干物质和乳糖含量达到了最佳拟合(调整后)值(分别为0.548、0.374、0.429和0.624),而体细胞计数的抛物线产量密度三参数模型(PARYLDENS)达到了最佳拟合值(0.481)。使用最小均方误差(MMSE)进行交叉验证。使用残差平方和(RSS)、平均平方预测误差(MSPE)、调整后的值及其标准差(SD)、赤池信息准则(AIC)、校正赤池信息准则(AICc)和贝叶斯信息准则(BIC)进行模型比较。所有模型的个体调整后标准差约为0.2。39个模型成功拟合了所有成分的个体泌乳曲线。参数和计算复杂性促进了变异性捕获特性,而模型灵活性并未显著(>0.05)提高预测和解释潜力。总之,ALISCH和PARYLDENS可作为可靠的评估模型用于研究山羊奶成分的遗传变异性,以应对山羊乳业未来的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8373/7552780/fc50410c29da/animals-10-01693-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验