Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain.
Animal Breeding Consulting, S.L., Córdoba Science and Technology Park Rabanales 21, 14071 Córdoba, Spain.
Genes (Basel). 2020 Mar 14;11(3):309. doi: 10.3390/genes11030309.
Assessing dominance and additive effects of casein complex single-nucleotide polymorphisms (SNPs) (αS1, αS2, β, and κ casein), and their epistatic relationships may maximize our knowledge on the genetic regulation of profitable traits. Contextually, new genomic selection perspectives may translate this higher efficiency into higher accuracies for milk yield and components' genetic parameters and breeding values. A total of 2594 lactation records were collected from 159 Murciano-Granadina goats (2005-2018), genotyped for 48 casein loci-located SNPs. Bonferroni-corrected nonparametric tests, categorical principal component analysis (CATPCA), and nonlinear canonical correlations were performed to quantify additive, dominance, and interSNP epistatic effects and evaluate the outcomes of their inclusion in quantitative and qualitative milk production traits' genetic models (yield, protein, fat, solids, and lactose contents and somatic cells count). Milk yield, lactose, and somatic cell count heritabilities increased considerably when the model including genetic effects was considered (0.46, 0.30, 0.43, respectively). Components standard prediction errors decreased, and accuracies and reliabilities increased when genetic effects were considered. Conclusively, including genetic effects and relationships among these heritable biomarkers may improve model efficiency, genetic parameters, and breeding values for milk yield and composition, optimizing selection practices profitability for components whose technological application may be especially relevant for the cheese-making dairy sector.
评估酪蛋白复合体单核苷酸多态性(SNP)(αS1、αS2、β 和 κ 酪蛋白)的显性和加性效应,以及它们的上位性关系,可以最大限度地提高我们对有利性状遗传调控的认识。从上下文来看,新的基因组选择观点可以将这种更高的效率转化为更高的准确性,用于预测牛奶产量和成分的遗传参数和育种值。从 2005 年到 2018 年,共收集了 159 只穆尔西亚-格拉纳迪纳山羊的 2594 个泌乳记录,并对 48 个酪蛋白基因座的 SNP 进行了基因分型。采用 Bonferroni 校正的非参数检验、分类主成分分析(CATPCA)和非线性典型相关来量化加性、显性和 SNP 间上位性效应,并评估它们在数量和质量产奶性状遗传模型(产量、蛋白质、脂肪、固体、乳糖含量和体细胞数)中的纳入结果。当考虑包含遗传效应的模型时,牛奶产量、乳糖和体细胞计数的遗传力显著增加(分别为 0.46、0.30 和 0.43)。考虑遗传效应后,成分的标准预测误差降低,准确性和可靠性增加。总之,考虑这些可遗传生物标志物的遗传效应和关系可以提高模型效率、遗传参数和产奶量和成分的育种值,优化选择实践的盈利能力,对于那些技术应用可能对奶酪生产乳制品行业特别相关的成分尤其如此。