Suppr超能文献

褪黑素在缺血性脑卒中后细胞损伤病理生理成分中的生理和药理学作用。

Physiological and pharmacological roles of melatonin in the pathophysiological components of cellular injury after ischemic stroke.

机构信息

Department of Physiology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey

Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey

出版信息

Turk J Med Sci. 2020 Nov 3;50(SI-2):1655-1664. doi: 10.3906/sag-2008-32.

Abstract

Apart from its metabolic or physiological functions, melatonin has a potent cytoprotective activity in the physiological and pathological conditions. It is synthetized by the pineal gland and released into the blood circulation but particularly cerebrospinal fluid in a circadian manner. It can also easily diffuse through cellular membranes due its small size and lipophilic structure. Its cytoprotective activity has been linked to its potent free radical scavenger activity with the desirable characteristics of a clinically- reliable antioxidant. Melatonin detoxifies oxygen and nitrogen-based free radicals and oxidizing agents, including the highly toxic hydroxyl-and peroxynitrite radicals, initiating cellular damage. However, the cytoprotective activity of melatonin is complex and cannot be solely limited to its free radical scavenger activity. It regulates cellular signaling pathways through receptor– dependent and independent mechanisms. Most of these downstream molecules, such as PI3K/AKT pathway components, also contribute to the cytoprotective effects of melatonin. In this term, melatonin is a promising molecule for the treatment of neurodegenerative disorders, such as ischemic stroke, which melatonin reduces ischemic brain injury in animal models of ischemic stroke. It regulates also circadian rhythm proteins after ischemic stroke, playing roles in cellular survival. In this context, present article summarizes the possible role of melatonin in the pathophysiological events after ischemic stroke.

摘要

除了其代谢或生理功能外,褪黑素在生理和病理条件下具有强大的细胞保护活性。它由松果体合成并以昼夜节律的方式释放到血液循环中,但特别是脑脊液中。由于其体积小和亲脂性结构,它也可以轻松地穿过细胞膜。其细胞保护活性与其强大的自由基清除活性有关,具有临床可靠抗氧化剂的理想特性。褪黑素可以解毒氧和氮自由基以及氧化剂,包括高度毒性的羟自由基和过氧亚硝酸盐自由基,从而引发细胞损伤。然而,褪黑素的细胞保护活性很复杂,不能仅仅局限于其自由基清除活性。它通过受体依赖和独立的机制调节细胞信号通路。这些下游分子中的大多数,如 PI3K/AKT 通路成分,也有助于褪黑素的细胞保护作用。在这种情况下,褪黑素是治疗神经退行性疾病(如缺血性中风)的有前途的分子,因为褪黑素可减少动物模型中的缺血性脑损伤。它还调节缺血性中风后的昼夜节律蛋白,在细胞存活中发挥作用。在这种情况下,本文总结了褪黑素在缺血性中风后病理生理事件中的可能作用。

相似文献

5
The oxidant/antioxidant network: role of melatonin.
Biol Signals Recept. 1999 Jan-Apr;8(1-2):56-63. doi: 10.1159/000014569.
6
Melatonin in relation to cellular antioxidative defense mechanisms.
Horm Metab Res. 1997 Aug;29(8):363-72. doi: 10.1055/s-2007-979057.
8
Suppression of oxygen toxicity by melatonin.
Zhongguo Yao Li Xue Bao. 1998 Nov;19(6):575-81.
9
Melatonin: exceeding expectations.
Physiology (Bethesda). 2014 Sep;29(5):325-33. doi: 10.1152/physiol.00011.2014.
10
Role of melatonin in neurodegenerative diseases.
Neurotox Res. 2005;7(4):293-318. doi: 10.1007/BF03033887.

引用本文的文献

1
The Interplay Between Melatonin and Nitric Oxide: Mechanisms and Implications in Stroke Pathophysiology.
Antioxidants (Basel). 2025 Jun 13;14(6):724. doi: 10.3390/antiox14060724.
2
Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging.
Antioxidants (Basel). 2023 Oct 10;12(10):1844. doi: 10.3390/antiox12101844.
3
The role of circadian clock in astrocytes: From cellular functions to ischemic stroke therapeutic targets.
Front Neurosci. 2022 Dec 8;16:1013027. doi: 10.3389/fnins.2022.1013027. eCollection 2022.
4
A Novel Theanine Complex, Mg-L-Theanine Improves Sleep Quality Regulating Brain Electrochemical Activity.
Front Nutr. 2022 Apr 5;9:874254. doi: 10.3389/fnut.2022.874254. eCollection 2022.

本文引用的文献

4
Melatonin receptor agonist ramelteon attenuates mouse acute and chronic ischemic brain injury.
Acta Pharmacol Sin. 2020 Aug;41(8):1016-1024. doi: 10.1038/s41401-020-0361-2. Epub 2020 Feb 27.
5
Agomelatine protects against permanent cerebral ischaemia via the Nrf2-HO-1 pathway.
Eur J Pharmacol. 2020 May 5;874:173028. doi: 10.1016/j.ejphar.2020.173028. Epub 2020 Feb 19.
6
Transcriptome Analysis of Pineal Glands in the Mouse Model of Alzheimer's Disease.
Front Mol Neurosci. 2020 Jan 9;12:318. doi: 10.3389/fnmol.2019.00318. eCollection 2019.
9
Normobaric oxygen treatment improves neuronal survival functional recovery and axonal plasticity after newborn hypoxia-ischemia.
Behav Brain Res. 2020 Feb 3;379:112338. doi: 10.1016/j.bbr.2019.112338. Epub 2019 Nov 13.
10
Circulating Circular RNAs as Biomarkers for the Diagnosis and Prediction of Outcomes in Acute Ischemic Stroke.
Stroke. 2020 Jan;51(1):319-323. doi: 10.1161/STROKEAHA.119.027348. Epub 2019 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验