Loos Pierre-François, Blase Xavier
Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France.
Université Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France.
J Chem Phys. 2020 Sep 21;153(11):114120. doi: 10.1063/5.0023168.
The Bethe-Salpeter equation (BSE) formalism is a computationally affordable method for the calculation of accurate optical excitation energies in molecular systems. Similar to the ubiquitous adiabatic approximation of time-dependent density-functional theory, the static approximation, which substitutes a dynamical (i.e., frequency-dependent) kernel by its static limit, is usually enforced in most implementations of the BSE formalism. Here, going beyond the static approximation, we compute the dynamical correction of the electron-hole screening for molecular excitation energies, thanks to a renormalized first-order perturbative correction to the static BSE excitation energies. The present dynamical correction goes beyond the plasmon-pole approximation as the dynamical screening of the Coulomb interaction is computed exactly within the random-phase approximation. Our calculations are benchmarked against high-level (coupled-cluster) calculations, allowing one to assess the clear improvement brought by the dynamical correction for both singlet and triplet optical transitions.
贝特-萨尔皮特方程(BSE)形式体系是一种计算成本可承受的方法,用于计算分子体系中精确的光学激发能。与含时密度泛函理论中普遍存在的绝热近似类似,在BSE形式体系的大多数实现中,通常采用静态近似,即将动态(即频率相关)核替换为其静态极限。在此,超越静态近似,我们通过对静态BSE激发能进行重整化的一阶微扰修正,计算了分子激发能的电子-空穴屏蔽的动态修正。由于在随机相位近似内精确计算了库仑相互作用的动态屏蔽,目前的动态修正超越了等离子体极点近似。我们的计算以高级(耦合簇)计算为基准,从而能够评估动态修正在单重态和三重态光学跃迁方面带来的明显改进。