Suppr超能文献

用于支持可重复医学研究的两样本t检验的贝叶斯后验显著性和效应量指标分析的模拟数据。

Simulation data for the analysis of Bayesian posterior significance and effect size indices for the two-sample t-test to support reproducible medical research.

作者信息

Kelter Riko

机构信息

Department of Mathematics, University of Siegen, Siegen, Germany.

出版信息

BMC Res Notes. 2020 Sep 22;13(1):452. doi: 10.1186/s13104-020-05291-z.

Abstract

OBJECTIVES

The data presented herein represents the simulated datasets of a recently conducted larger study which investigated the behaviour of Bayesian indices of significance and effect size as alternatives to traditional p-values. The study considered the setting of Student's and Welch's two-sample t-test often used in medical research. It investigated the influence of the sample size, noise, the selected prior hyperparameters and the sensitivity to type I errors. The posterior indices used included the Bayes factor, the region of practical equivalence, the probability of direction, the MAP-based p-value and the e-value in the Full Bayesian Significance Test. The simulation study was conducted in the statistical programming language R.

DATA DESCRIPTION

The R script files for simulation of the datasets used in the study are presented in this article. These script files can both simulate the raw datasets and run the analyses. As researchers may be faced with different effect sizes, noise levels or priors in their domain than the ones studied in the original paper, the scripts extend the original results by allowing to recreate all analyses of interest in different contexts. Therefore, they should be relevant to other researchers.

摘要

目标

本文所呈现的数据代表了最近一项规模更大的研究的模拟数据集,该研究调查了贝叶斯显著性指数和效应大小作为传统p值替代方法的行为。该研究考虑了医学研究中常用的学生氏和韦尔奇两样本t检验的情况。它研究了样本大小、噪声、所选先验超参数以及对I型错误的敏感性的影响。所使用的后验指数包括贝叶斯因子、实际等效区域、方向概率、基于最大后验概率(MAP)的p值以及全贝叶斯显著性检验中的e值。模拟研究是使用统计编程语言R进行的。

数据描述

本文展示了用于该研究数据集模拟的R脚本文件。这些脚本文件既能模拟原始数据集,又能运行分析。由于研究人员在其领域中可能面临与原论文中所研究的不同的效应大小、噪声水平或先验,这些脚本通过允许在不同背景下重新创建所有感兴趣的分析来扩展原始结果。因此,它们应该对其他研究人员有参考价值。

相似文献

本文引用的文献

3
Indices of Effect Existence and Significance in the Bayesian Framework.贝叶斯框架下效应存在性和显著性的指标
Front Psychol. 2019 Dec 10;10:2767. doi: 10.3389/fpsyg.2019.02767. eCollection 2019.
4
The reproducibility of research and the misinterpretation of -values.研究的可重复性与P值的错误解读
R Soc Open Sci. 2017 Dec 6;4(12):171085. doi: 10.1098/rsos.171085. eCollection 2017 Dec.
6
Why Most Clinical Research Is Not Useful.为何大多数临床研究并无用处。
PLoS Med. 2016 Jun 21;13(6):e1002049. doi: 10.1371/journal.pmed.1002049. eCollection 2016 Jun.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验