Xiong Mi, Gao Zhe, Zhao Peng, Wang Guofu, Yan Wenjun, Xing Shuangfeng, Wang Pengfei, Ma Jingyuan, Jiang Zheng, Liu Xingchen, Ma Jiping, Xu Jie, Qin Yong
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 030001, Taiyuan, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
Nat Commun. 2020 Sep 22;11(1):4773. doi: 10.1038/s41467-020-18567-6.
In situ tuning of the electronic structure of active sites is a long-standing challenge. Herein, we propose a strategy by controlling the hydrogen spillover distance to in situ tune the electronic structure. The strategy is demonstrated to be feasible with the assistance of CoO/AlO/Pt catalysts prepared by atomic layer deposition in which CoO and Pt nanoparticles are separated by hollow AlO nanotubes. The strength of hydrogen spillover from Pt to CoO can be precisely tailored by varying the AlO thickness. Using CoO/AlO catalyzed styrene epoxidation as an example, the CoO/AlO/Pt with 7 nm AlO layer exhibits greatly enhanced selectivity (from 74.3% to 94.8%) when H is added. The enhanced selectivity is attributed to the introduction of controllable hydrogen spillover, resulting in the reduction of CoO during the reaction. Our method is also effective for the epoxidation of styrene derivatives. We anticipate this method is a general strategy for other reactions.
原位调控活性位点的电子结构是一个长期存在的挑战。在此,我们提出一种通过控制氢溢流距离来原位调控电子结构的策略。在通过原子层沉积制备的CoO/AlO/Pt催化剂的辅助下,该策略被证明是可行的,其中CoO和Pt纳米颗粒被中空的AlO纳米管隔开。通过改变AlO的厚度,可以精确调整从Pt到CoO的氢溢流强度。以CoO/AlO催化苯乙烯环氧化为例,具有7nm AlO层的CoO/AlO/Pt在添加H时表现出大大提高的选择性(从74.3%提高到94.8%)。选择性的提高归因于可控氢溢流的引入,导致反应过程中CoO的还原。我们的方法对苯乙烯衍生物的环氧化也有效。我们预计这种方法是其他反应的通用策略。