Bonelli Barbara, Tammaro Olimpia, Martinovic Ferenc, Nasi Roberto, Dell'Agli Gianfranco, Rivolo Paola, Giorgis Fabrizio, Ditaranto Nicoletta, Deorsola Fabio Alessandro, Esposito Serena
Dipartimento di Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, 03043 Cassino, Frosinone, Italy.
ACS Omega. 2021 Sep 14;6(38):24562-24574. doi: 10.1021/acsomega.1c03153. eCollection 2021 Sep 28.
MnO -TiO catalysts (0, 1, 5, and 10 wt % Mn nominal content) for NH-SCR (selective catalytic reduction) of NO have been synthesized by the reverse micelle-assisted sol-gel procedure, with the aim of improving the dispersion of the active phase, usually poor when obtained by other synthesis methods (e.g., impregnation) and thereby lowering its amount. For comparison, a sample at nominal 10 wt % Mn was obtained by impregnation of the (undoped) TiO sample. The catalysts were characterized by using an integrated multitechnique approach, encompassing X-ray diffraction followed by Rietveld refinement, micro-Raman spectroscopy, N isotherm measurement at -196 °C, energy-dispersive X-ray analysis, diffuse reflectance UV-vis spectroscopy, temperature-programmed reduction technique, and X-ray photoelectron spectroscopy. The obtained results prove that the reverse micelle sol-gel approach allowed for enhancing the catalytic activity, in that the catalysts were active in a broad temperature range at a substantially low Mn loading, as compared to the impregnated catalyst. Particularly, the 5 wt % Mn catalyst showed the best NH-SCR activity in terms of both NO conversion (ca. 90%) and the amount of produced NO (ca. 50 ppm) in the 200-250 °C temperature range.
通过反胶束辅助溶胶-凝胶法合成了用于NH₃选择性催化还原NO的MnOₓ-TiO₂催化剂(名义锰含量为0、1、5和10 wt%),目的是改善活性相的分散性,活性相通过其他合成方法(如浸渍法)获得时通常分散性较差,从而减少其用量。作为对比,通过浸渍(未掺杂的)TiO₂样品获得了名义锰含量为10 wt%的样品。采用综合多技术方法对催化剂进行了表征,包括X射线衍射及Rietveld精修、显微拉曼光谱、-196℃下的N₂等温线测量、能量色散X射线分析、漫反射紫外可见光谱、程序升温还原技术和X射线光电子能谱。所得结果证明,反胶束溶胶-凝胶法能够提高催化活性,因为与浸渍催化剂相比,这些催化剂在相当低的锰负载量下在较宽的温度范围内具有活性。特别是,5 wt% Mn催化剂在200-250℃温度范围内,在NO转化率(约90%)和生成的N₂O量(约50 ppm)方面均表现出最佳的NH₃-SCR活性。