Barker Kathryn M, Dunn Erin C, Richmond Tracy K, Ahmed Sarah, Hawrilenko Matthew, Evans Clare R
Department of Medicine, University of California San Diego, La Jolla, CA, USA.
Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
SSM Popul Health. 2020 Aug 29;12:100661. doi: 10.1016/j.ssmph.2020.100661. eCollection 2020 Dec.
Recognizing that health outcomes are influenced by and occur within multiple social and physical contexts, researchers have used multilevel modeling techniques for decades to analyze hierarchical or nested data. Cross-Classified Multilevel Models (CCMM) are a statistical technique proposed in the 1990s that extend standard multilevel modeling and enable the simultaneous analysis of non-nested multilevel data. Though use of CCMM in empirical health studies has become increasingly popular, there has not yet been a review summarizing how CCMM are used in the health literature. To address this gap, we performed a scoping review of empirical health studies using CCMM to: (a) evaluate the extent to which this statistical approach has been adopted; (b) assess the rationale and procedures for using CCMM; and (c) provide concrete recommendations for the future use of CCMM. We identified 118 CCMM papers published in English-language literature between 1994 and 2018. Our results reveal a steady growth in empirical health studies using CCMM to address a wide variety of health outcomes in clustered non-hierarchical data. Health researchers use CCMM primarily for five reasons: (1) to statistically account for non-independence in clustered data structures; out of substantive interest in the variance explained by (2) concurrent contexts, (3) contexts over time, and (4) age-period-cohort effects; and (5) to apply CCMM alongside other techniques within a joint model. We conclude by proposing a set of recommendations for use of CCMM with the aim of improved clarity and standardization of reporting in future research using this statistical approach.
认识到健康结果受到多种社会和物理环境的影响并在其中发生,研究人员已经使用多层建模技术数十年,以分析分层或嵌套数据。交叉分类多层模型(CCMM)是20世纪90年代提出的一种统计技术,它扩展了标准多层建模,并能够同时分析非嵌套多层数据。尽管CCMM在实证健康研究中的应用越来越普遍,但尚未有综述总结CCMM在健康文献中的使用情况。为了填补这一空白,我们对使用CCMM的实证健康研究进行了一项范围综述,以:(a)评估这种统计方法的采用程度;(b)评估使用CCMM的基本原理和程序;以及(c)为CCMM的未来使用提供具体建议。我们确定了1994年至2018年间在英文文献中发表的118篇CCMM论文。我们的结果显示,使用CCMM来解决聚类非分层数据中各种健康结果的实证健康研究稳步增长。健康研究人员使用CCMM主要有五个原因:(1)从统计学上考虑聚类数据结构中的非独立性;出于对由(2)并发环境、(3)随时间变化的环境以及(4)年龄-时期-队列效应所解释的方差的实质性兴趣;以及(5)在联合模型中与其他技术一起应用CCMM。我们通过提出一组关于使用CCMM的建议来得出结论,目的是在未来使用这种统计方法的研究中提高报告的清晰度和标准化。