Suppr超能文献

多层次分析个体异质性和判别准确性的方法学见解:对层配置对层间方差的影响以及跨层次固定效应的实证检验。

Methodological insights into multilevel analysis of individual heterogeneity and discriminatory accuracy: An empirical examination of the effects of strata configurations on between-stratum variance and of fixed effects across hierarchical levels.

机构信息

Centre for Diversity Policy Research and Practice, Oxford Brookes University, Oxford, United Kingdom.

出版信息

PLoS One. 2024 Mar 18;19(3):e0297561. doi: 10.1371/journal.pone.0297561. eCollection 2024.

Abstract

This study aims to advance the Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy (MAIHDA) approach by addressing two key questions. First, it investigates the impact of using increasingly complex combinations of variables to create intersectional strata on between-stratum variance, measured by the variance partitioning coefficients (VPCs). Second, it examines the stability of coefficients for fixed effects across models with an increasing number of hierarchical levels. The analysis is performed using data from a survey of over 42,000 respondents on the prevalence of gender-based violence in European research organisations conducted in 2022. Results indicate that the number of intersectional strata is not significantly related to the proportion of the total variance attributable to the variance between intersectional strata in the MAIHDA approach. Moreover, the coefficients remain relatively stable and consistent across models with increasing complexity, where levels about organisations and countries are added. The analysis concludes that the MAIHDA approach can be flexibly applied for different research purposes, either to better account for structures of power and inequality; or to provide intersectionality-sensitive estimates. The findings underscore the need for researchers to clarify the specific aims of using MAIHDA, whether descriptive or inferential, and highlight the approach's versatility in addressing intersectionality within quantitative research. The study contributes to the literature by offering empirical evidence on the methodological considerations in applying the MAIHDA approach, thereby aiding in its more effective use for intersectional research.

摘要

本研究旨在通过回答两个关键问题来推进多水平个体异质性和判别准确性分析(MAIHDA)方法。首先,研究调查了使用越来越复杂的变量组合来创建交叉分层对分层间方差(由方差划分系数(VPCs)衡量)的影响。其次,研究考察了在具有越来越多层次的模型中,固定效应系数在跨模型的稳定性。分析使用了 2022 年对欧洲研究组织中性别暴力流行情况进行的一项超过 42000 名受访者调查的数据进行。结果表明,交叉分层的数量与 MAIHDA 方法中归因于交叉分层间方差的总方差比例之间没有显著关系。此外,随着模型复杂性的增加(加入组织和国家等层次),系数仍然相对稳定且一致。分析得出结论,MAIHDA 方法可以灵活应用于不同的研究目的,无论是更好地考虑权力和不平等结构;还是提供对交叉性敏感的估计。研究结果强调了研究人员需要明确使用 MAIHDA 的具体目的,无论是描述性的还是推断性的,并突出了该方法在解决定量研究中的交叉性方面的多功能性。本研究通过提供关于应用 MAIHDA 方法的方法论考虑的实证证据,为文献做出了贡献,从而有助于更有效地将其用于交叉研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bac5/10947637/df33340c30e6/pone.0297561.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验