Schmidt James R, Liefooghe Baptist, De Houwer Jan
LEAD-CNRS UMR 5022, Université Bourgogne Franche-Comté (UBFC), FR.
Department of Experimental Clinical and Health Psychology, Ghent University, BE.
J Cogn. 2020 Sep 10;3(1):22. doi: 10.5334/joc.97.
The Parallel Episodic Processing (PEP) model is a neural network for simulating human performance in speeded response time tasks. It learns with an exemplar-based memory store and it is capable of modelling findings from various subdomains of cognition. In this paper, we show how the PEP model can be designed to follow instructions (e.g., task rules and goals). The extended PEP model is then used to simulate a number of key findings from the task switching domain. These include the switch cost, task-rule congruency effects, response repetition asymmetries, cue repetition benefits, and the full pattern of means from a recent feature integration decomposition of cued task switching (Schmidt & Liefooghe, 2016). We demonstrate that the PEP model fits the participant data well, that the model does not possess the flexibility to match any pattern of results, and that a number of competing task switching models fail to account for key observations that the PEP model produces naturally. Given the parsimony and unique explanatory power of the episodic account presented here, our results suggest that feature-integration biases have a far greater power in explaining task-switching performance than previously assumed.
并行情景处理(PEP)模型是一种用于模拟人类在快速反应时间任务中表现的神经网络。它通过基于范例的记忆存储进行学习,并且能够对认知各个子领域的研究结果进行建模。在本文中,我们展示了如何设计PEP模型以遵循指令(例如任务规则和目标)。然后,扩展的PEP模型被用于模拟任务切换领域的一些关键研究结果。这些结果包括切换成本、任务规则一致性效应、反应重复不对称性、线索重复益处,以及来自最近线索化任务切换的特征整合分解的完整均值模式(施密特和利福赫,2016)。我们证明PEP模型能很好地拟合参与者数据,该模型不具备匹配任何结果模式的灵活性,并且一些相互竞争的任务切换模型无法解释PEP模型自然产生的关键观察结果。鉴于本文所呈现的情景解释的简洁性和独特解释力,我们的结果表明,特征整合偏差在解释任务切换表现方面的作用比之前假设的要大得多。