AMGEN Research, One Amgen Center Drive, Thousand Oaks, California 91320, United States.
J Med Chem. 2020 Oct 22;63(20):11602-11614. doi: 10.1021/acs.jmedchem.0c00749. Epub 2020 Oct 9.
A comprehensive understanding of structure-reactivity relationships is critical to the design and optimization of cysteine-targeted covalent inhibitors. Herein, we report glutathione (GSH) reaction rates for -phenyl acrylamides with varied substitutions at the α- and β-positions of the acrylamide moiety. We find that the GSH reaction rates can generally be understood in terms of the electron donating or withdrawing ability of the substituent. When installed at the β-position, aminomethyl substituents with amine p's > 7 accelerate, while those with p's < 7 slow the rate of GSH addition at pH 7.4, relative to a hydrogen substituent. Although a computational model was able to only approximately capture experimental reactivity trends, our calculations do not support a frequently invoked mechanism of concerted amine/thiol proton transfer and C-S bond formation and instead suggest that protonated aminomethyl functions as an electron-withdrawing group to reduce the barrier for thiolate addition to the acrylamide.
全面了解结构-反应关系对于设计和优化半胱氨酸靶向的共价抑制剂至关重要。在此,我们报告了具有不同取代基的 -苯丙烯酰胺与谷胱甘肽(GSH)的反应速率,这些取代基位于丙烯酰胺部分的α-和β-位。我们发现,GSH 的反应速率通常可以根据取代基的供电子或吸电子能力来理解。当安装在β-位时,具有胺 p's > 7 的氨甲基取代基会加速反应,而 p's < 7 的取代基则会减缓 GSH 在 pH 7.4 下的加成速率,相对于氢取代基。尽管计算模型只能大致捕捉到实验反应性趋势,但我们的计算不支持经常被引用的协同胺/硫醇质子转移和 C-S 键形成机制,而是表明质子化的氨甲基作为吸电子基团降低了巯基加成到丙烯酰胺的反应势垒。