Norwegian Institute for Water Research (NIVA), Oslo, Norway.
Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), Ås, Norway.
Integr Environ Assess Manag. 2021 Jan;17(1):147-164. doi: 10.1002/ieam.4348. Epub 2020 Oct 23.
The adverse outcome pathway (AOP) framework has gained international recognition as a systematic approach linking mechanistic processes to toxicity endpoints. Nevertheless, successful implementation into risk assessments is still limited by the lack of quantitative AOP models (qAOPs) and assessment of uncertainties. The few published qAOP models so far are typically based on data-demanding systems biology models. Here, we propose a less data-demanding approach for quantification of AOPs and AOP networks, based on regression modeling and Bayesian networks (BNs). We demonstrate this approach with the proposed AOP #245, "Uncoupling of photophosphorylation leading to reduced ATP production associated growth inhibition," using a small experimental data set from exposure of Lemna minor to the pesticide 3,5-dichlorophenol. The AOP-BN reflects the network structure of AOP #245 containing 2 molecular initiating events (MIEs), 3 key events (KEs), and 1 adverse outcome (AO). First, for each dose-response and response-response (KE) relationship, we quantify the causal relationship by Bayesian regression modeling. The regression models correspond to dose-response functions commonly applied in ecotoxicology. Secondly, we apply the fitted regression models with associated uncertainty to simulate 10 000 response values along the predictor gradient. Thirdly, we use the simulated values to parameterize the conditional probability tables of the BN model. The quantified AOP-BN model can be run in several directions: 1) prognostic inference, run forward from the stressor node to predict the AO level; 2) diagnostic inference, run backward from the AO node; and 3) omnidirectionally, run from the intermediate MIEs and/or KEs. Internal validation shows that the AOP-BN can obtain a high accuracy rate, when run is from intermediate nodes and when a low resolution is acceptable for the AO. Although the performance of this AOP-BN is limited by the small data set, our study demonstrates a proof-of-concept: the combined use of Bayesian regression modeling and Bayesian network modeling for quantifying AOPs. Integr Environ Assess Manag 2021;17:147-164. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
不良结局途径 (AOP) 框架作为一种将机制过程与毒性终点联系起来的系统方法,已在国际上得到认可。然而,成功地将其应用于风险评估仍然受到缺乏定量 AOP 模型 (qAOP) 和不确定性评估的限制。迄今为止,为数不多的已发表的 qAOP 模型通常基于数据要求较高的系统生物学模型。在这里,我们提出了一种基于回归建模和贝叶斯网络 (BN) 的量化 AOP 和 AOP 网络的方法,该方法的要求较低。我们使用拟议的 AOP #245“光磷酸化解偶联导致与生长抑制相关的 ATP 产生减少”的小型实验数据集,证明了该方法的有效性,该数据集来自对浮萍的暴露3,5-二氯苯酚农药。AOP-BN 反映了包含 2 个分子起始事件 (MIE)、3 个关键事件 (KE) 和 1 个不良结局 (AO) 的 AOP #245 的网络结构。首先,对于每个剂量-反应和反应-反应 (KE) 关系,我们通过贝叶斯回归建模来量化因果关系。回归模型对应于生态毒理学中常用的剂量-反应函数。其次,我们将拟合的回归模型及其相关不确定性应用于沿预测器梯度模拟 10,000 个响应值。第三,我们使用模拟值来参数化 BN 模型的条件概率表。量化的 AOP-BN 模型可以在多个方向上运行:1) 预后推断,从应激源节点向前运行以预测 AO 水平;2) 诊断推理,从 AO 节点向后运行;3) 全方位运行,从中继 MIE 和/或 KE 运行。内部验证表明,当从中间节点运行时,AOP-BN 可以获得很高的准确率,并且当 AO 的分辨率可以接受较低时。尽管该 AOP-BN 的性能受到数据集较小的限制,但我们的研究证明了一个概念验证:贝叶斯回归建模和贝叶斯网络建模的结合可用于量化 AOP。2021 年综合环境评估与管理 17:147-164。©2020 作者。综合环境评估与管理由 Wiley 期刊 LLC 代表环境毒理学与化学学会 (SETAC) 出版。