Suppr超能文献

重复暴露慢性毒性定量不良结局途径建模的概念验证。

Proof of concept for quantitative adverse outcome pathway modeling of chronic toxicity in repeated exposure.

机构信息

Scientific Product Assessment Center, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan.

Battelle, 505 King Ave., Columbus, OH, 43201, USA.

出版信息

Sci Rep. 2024 Feb 27;14(1):4741. doi: 10.1038/s41598-024-55220-4.

Abstract

Adverse Outcome Pathway (AOP) is a useful tool to glean mode of action (MOE) of a chemical. However, in order to use it for the purpose of risk assessment, an AOP needs to be quantified using in vitro or in vivo data. Majority of quantitative AOPs developed so far, were for single exposure to progressively higher doses. Limited attempts were made to include time in the modeling. Here as a proof-of concept, we developed a hypothetical AOP, and quantified it using a virtual dataset for six repeated exposures using a Bayesian Network Analysis (BN) framework. The virtual data was generated using realistic assumptions. Effects of each exposure were analyzed separately using a static BN model and analyzed in combination using a dynamic BN (DBN) model. Our work shows that the DBN model can be used to calculate the probability of adverse outcome when other upstream KEs were observed earlier. These probabilities can help in identification of early indicators of AO. In addition, we also developed a data driven AOP pruning technique using a lasso-based subset selection, and show that the causal structure of AOP is itself dynamic and changes over time. This proof-of-concept study revealed the possibility for expanding the applicability of the AOP framework to incorporate biological dynamism in toxicity appearance by repeated insults.

摘要

不良结局途径(AOP)是一种有用的工具,可以了解化学物质的作用模式(MOE)。然而,为了将其用于风险评估目的,需要使用体外或体内数据对 AOP 进行量化。迄今为止,大多数已开发的定量 AOP 都是针对单一暴露于逐渐升高的剂量。在建模中纳入时间的尝试有限。在这里,作为概念验证,我们开发了一个假设的 AOP,并使用贝叶斯网络分析(BN)框架对其进行了量化,该框架使用了六个重复暴露的虚拟数据集。虚拟数据是根据实际假设生成的。使用静态 BN 模型分别分析每个暴露的影响,并使用动态 BN(DBN)模型对其进行组合分析。我们的工作表明,DBN 模型可用于计算在观察到其他上游 KE 更早时出现不良结局的概率。这些概率有助于识别 AO 的早期指标。此外,我们还使用基于套索的子集选择开发了一种数据驱动的 AOP 修剪技术,并表明 AOP 的因果结构本身是动态的,并且随时间而变化。这项概念验证研究表明,有可能通过重复的刺激将 AOP 框架的适用性扩展到纳入毒性出现的生物学动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d259/10899215/519d04b91ee9/41598_2024_55220_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验