Yu Wen-Yuan, Ma De-Kun, Yang Dong-Peng, Yang Xiao-Gang, Xu Quan-Long, Chen Wei, Huang Shaoming
Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China and Zhejiang Key Laboratory of Carbon Materials, Wenzhou University, Wenzhou 325027, China.
School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, China.
Phys Chem Chem Phys. 2020 Sep 23;22(36):20202-20211. doi: 10.1039/d0cp00284d.
The trade-off problem between light absorption and charge collection under lower band-bending (bias) is extremely difficult to resolve in water splitting on photoelectrodes. Although the use of metallic back-reflectors, antireflection coatings, and textured substrates and light absorbers enable the improvement of light utilization efficiency, these methods still suffer from high cost and complex fabrication process, especially, incompetent separation of photogenerated carriers. Here taking the hematite (α-Fe2O3) photoanode as a model, we report that a noncontact photonic crystal (PC) film composed of silica nanoparticles and ethoxylated trimethylolpropane triacrylate (ETPTA) resin can significantly enhance the photoelectrochemical (PEC) activity of the photoelectrode. Specifically, more than 250 mV cathodic shift in the onset potential and 4 times larger photocurrent at 1.0 V versus a reversible hydrogen electrode (RHE) were achieved over the α-Fe2O3-PC photoanode hybrid system, compared with the pristine α-Fe2O3 photoanode. Our work showed that a PC film not only boosted light absorption of the α-Fe2O3 layer but also improved its charge transfer efficiency under light illumination. These new findings of the synergistic effect will open a new avenue to design high-performance solar energy conversion devices.
在光电极水分解过程中,低能带弯曲(偏压)下光吸收与电荷收集之间的权衡问题极难解决。尽管使用金属背反射器、抗反射涂层、纹理化衬底和光吸收剂能够提高光利用效率,但这些方法仍存在成本高和制造工艺复杂的问题,尤其是光生载流子的分离能力不足。在此,我们以赤铁矿(α-Fe₂O₃)光阳极作为模型,报道了一种由二氧化硅纳米颗粒和乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)树脂组成的非接触光子晶体(PC)薄膜能够显著提高光电极的光电化学(PEC)活性。具体而言,与原始的α-Fe₂O₃光阳极相比,α-Fe₂O₃-PC光阳极混合系统在起始电位上实现了超过250 mV的阴极偏移,在相对于可逆氢电极(RHE)为1.0 V时光电流增大了4倍。我们的工作表明,PC薄膜不仅增强了α-Fe₂O₃层的光吸收,还提高了其在光照下的电荷转移效率。这些关于协同效应的新发现将为设计高性能太阳能转换装置开辟一条新途径。