Katsuki Tomohiro, Zahran Zaki N, Tanaka Kou, Eo Tatsuya, Mohamed Eman A, Tsubonouchi Yuta, Berber Mohamed R, Yagi Masayuki
Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata 9050-2181, Japan.
Faculty of Science, Tanta University, Tanta 5111, Egypt.
ACS Appl Mater Interfaces. 2021 Aug 25;13(33):39282-39290. doi: 10.1021/acsami.1c08949. Epub 2021 Aug 13.
Facile and scalable fabrication of α-FeO photoanodes using a precursor solution containing Fe ions and 1-ethylimidazole (EIm) in methanol was demonstrated to afford a rigidly adhered α-FeO film with a controllable thickness on a fluorine-doped tin oxide (FTO) substrate. EIm ligation to Fe ions in the precursor solution brought about high crystallinity of three-dimensionally well-interconnected nanoparticles of α-FeO upon sintering. This is responsible for the 13.6 times higher photocurrent density (at 1.23 V vs reference hydrogen electrode (RHE)) for photoelectrochemical (PEC) water oxidation on the α-FeO (w-α-FeO) photoanode prepared with EIm compared with that (w/o-α-FeO) prepared without EIm. The w-α-FeO photoanode provided the highest charge separation efficiency (η) value of 27% among the state-of-the-art pristine α-FeO photoanodes, providing incident photon-to-current conversion efficiency (IPCE) of 13% at 420 nm and 1.23 V vs RHE. The superior η for the w-α-FeO photoanode is attributed to the decreased recombination of the photogenerated charge carriers at the grain boundary between nanoparticles, in addition to the higher number of the catalytically active sites and the efficient bulk charge transport in the film, compared with w/o-α-FeO.
通过在甲醇中使用含有铁离子和1-乙基咪唑(EIm)的前驱体溶液,实现了α-FeO光阳极的简便且可扩展的制备,从而在氟掺杂氧化锡(FTO)衬底上获得了厚度可控的牢固附着的α-FeO薄膜。前驱体溶液中EIm与铁离子的连接使得烧结后α-FeO的三维良好互连纳米颗粒具有高结晶度。这就是为什么与未使用EIm制备的α-FeO(w/o-α-FeO)光阳极相比,使用EIm制备的α-FeO(w-α-FeO)光阳极在光电化学(PEC)水氧化中的光电流密度(在1.23 V相对于参比氢电极(RHE)时)高13.6倍的原因。w-α-FeO光阳极在最先进的原始α-FeO光阳极中提供了27%的最高电荷分离效率(η)值,在420 nm和1.23 V相对于RHE时提供了13%的入射光子到电流转换效率(IPCE)。与w/o-α-FeO相比,w-α-FeO光阳极的优异η归因于纳米颗粒之间晶界处光生电荷载流子复合的减少,以及薄膜中催化活性位点数量的增加和有效的体电荷传输。