Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
Nanoscale. 2020 Oct 14;12(38):19746-19759. doi: 10.1039/d0nr05366j. Epub 2020 Sep 23.
Amphiphilic gold nanoparticles with diameters in the 2-4 nm range are promising as theranostic agents thanks to their spontaneous translocation through cell membranes. This study addresses the effects that these nanoparticles may have on a distinct feature of plasma membranes: lipid lateral phase separation. Atomic force microscopy, quartz crystal microbalance, and molecular dynamics are combined to study the interaction between model neuronal membranes, which spontaneously form ordered and disordered lipid domains, and amphiphilic gold nanoparticles having negatively charged surface functionalization. Nanoparticles are found to interact with the bilayer and form bilayer-embedded ordered aggregates. Nanoparticles also suppress lipid phase separation, in a concentration-dependent fashion. A general, yet simple thermodynamic model is developed to show that the change of lipid-lipid enthalpy is the dominant driving force towards the nanoparticle-induced destabilization of phase separation.
具有 2-4nm 直径的两亲性金纳米粒子由于能够自发穿过细胞膜,有望成为治疗诊断一体化试剂。本研究旨在探讨这些纳米粒子可能对质膜的一个显著特征——脂双层侧向相分离产生的影响。原子力显微镜、石英晶体微天平以及分子动力学相结合,用于研究具有负表面官能化的两亲性金纳米粒子与自发形成有序和无序脂双层域的模型神经元膜之间的相互作用。研究发现纳米粒子与双层膜相互作用,并形成双层嵌入的有序聚集体。纳米粒子还会以浓度依赖的方式抑制脂双层侧向相分离。建立了一个通用的,简单的热力学模型,表明改变脂-脂焓是导致纳米粒子诱导相分离失稳的主要驱动力。