Suppr超能文献

离子键和脂质驱动同种电荷纳米颗粒在脂质膜上的聚集。

Ion-bridges and lipids drive aggregation of same-charge nanoparticles on lipid membranes.

机构信息

Physics Department, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy.

Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

出版信息

Nanoscale. 2022 May 16;14(18):6912-6921. doi: 10.1039/d1nr08543c.

Abstract

The control of the aggregation of biomedical nanoparticles (NP) in physiological conditions is crucial as clustering may change completely the way they interact with the biological environment. Here we show that Au nanoparticles, functionalized by an anionic, amphiphilic shell, spontaneously aggregate in fluid zwitterionic lipid bilayers. We use molecular dynamics and enhanced sampling techniques to disentangle the short-range and long-range driving forces of aggregation. At short inter-particle distances, ion-mediated, charge-charge interactions (ion bridging) stabilize the formation of large NP aggregates, as confirmed by cryo-electron microscopy. Lipid depletion and membrane curvature are the main membrane deformations driving long-range NP-NP attraction. Ion bridging, lipid depletion, and membrane curvature stem from the configurational flexibility of the nanoparticle shell. Our simulations show, more in general, that the aggregation of same-charge membrane inclusions can be expected as a result of intrinsically nanoscale effects taking place at the NP-NP and NP-bilayer soft interfaces.

摘要

在生理条件下控制生物医学纳米粒子(NP)的聚集非常重要,因为聚集可能完全改变它们与生物环境相互作用的方式。在这里,我们表明,通过阴离子两亲壳官能化的 Au 纳米粒子在带电荷的两性离子脂双层中自发聚集。我们使用分子动力学和增强采样技术来区分聚集的短程和长程驱动力。在短粒子间距离处,离子介导的、电荷-电荷相互作用(离子桥接)稳定了大 NP 聚集体的形成,这通过低温电子显微镜得到了证实。脂质耗竭和膜曲率是驱动长程 NP-NP 吸引的主要膜变形。离子桥接、脂质耗竭和膜曲率源自纳米粒子壳的构象灵活性。我们的模拟更普遍地表明,由于在 NP-NP 和 NP-双层软界面处发生的固有纳米尺度效应,可以预期同种电荷膜包含物的聚集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验