Suppr超能文献

动态临床和生物标志物数据在COVID-19死亡风险预测中的价值:一项多中心回顾性队列研究

Value of dynamic clinical and biomarker data for mortality risk prediction in COVID-19: a multicentre retrospective cohort study.

作者信息

Berzuini Carlo, Hannan Cathal, King Andrew, Vail Andy, O'Leary Claire, Brough David, Galea James, Ogungbenro Kayode, Wright Megan, Pathmanaban Omar, Hulme Sharon, Allan Stuart, Bernardinelli Luisa, Patel Hiren C

机构信息

Centre for Biostatistics, The University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.

Manchester Centre for Clinical Neurosciences, Salford Royal Hospitals NHS Trust, Salford, UK.

出版信息

BMJ Open. 2020 Sep 23;10(9):e041983. doi: 10.1136/bmjopen-2020-041983.

Abstract

OBJECTIVES

Being able to predict which patients with COVID-19 are going to deteriorate is important to help identify patients for clinical and research practice. Clinical prediction models play a critical role in this process, but current models are of limited value because they are typically restricted to baseline predictors and do not always use contemporary statistical methods. We sought to explore the benefits of incorporating dynamic changes in routinely measured biomarkers, non-linear effects and applying 'state-of-the-art' statistical methods in the development of a prognostic model to predict death in hospitalised patients with COVID-19.

DESIGN

The data were analysed from admissions with COVID-19 to three hospital sites. Exploratory data analysis included a graphical approach to partial correlations. Dynamic biomarkers were considered up to 5 days following admission rather than depending solely on baseline or single time-point data. Marked departures from linear effects of covariates were identified by employing smoothing splines within a generalised additive modelling framework.

SETTING

3 secondary and tertiary level centres in Greater Manchester, the UK.

PARTICIPANTS

392 hospitalised patients with a diagnosis of COVID-19.

RESULTS

392 patients with a COVID-19 diagnosis were identified. Area under the receiver operating characteristic curve increased from 0.73 using admission data alone to 0.75 when also considering results of baseline blood samples and to 0.83 when considering dynamic values of routinely collected markers. There was clear non-linearity in the association of age with patient outcome.

CONCLUSIONS

This study shows that clinical prediction models to predict death in hospitalised patients with COVID-19 can be improved by taking into account both non-linear effects in covariates such as age and dynamic changes in values of biomarkers.

摘要

目的

能够预测哪些新冠肺炎患者病情会恶化,对于帮助确定临床和研究实践中的患者非常重要。临床预测模型在这一过程中起着关键作用,但目前的模型价值有限,因为它们通常仅限于基线预测因素,且并不总是使用当代统计方法。我们试图探索在预测新冠肺炎住院患者死亡的预后模型开发中纳入常规测量生物标志物的动态变化、非线性效应以及应用“最先进”统计方法的益处。

设计

对三个医院收治的新冠肺炎患者数据进行分析。探索性数据分析包括一种偏相关性的图形化方法。动态生物标志物考虑入院后长达5天的情况,而非仅依赖基线或单个时间点的数据。通过在广义相加模型框架内使用平滑样条来识别协变量线性效应的显著偏离。

地点

英国大曼彻斯特的3个二级和三级医疗中心。

参与者

392例确诊为新冠肺炎的住院患者。

结果

共识别出392例新冠肺炎确诊患者。受试者工作特征曲线下面积从仅使用入院数据时的0.73增加到同时考虑基线血样结果时的0.75,以及考虑常规收集标志物的动态值时的0.83。年龄与患者预后的关联存在明显的非线性。

结论

本研究表明,通过考虑年龄等协变量的非线性效应以及生物标志物值的动态变化,可改进预测新冠肺炎住院患者死亡的临床预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e999/8862449/e809fbeeb511/bmjopen-2020-041983f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验