Lin Bo, Chen Zihao, Song Pin, Liu Haishi, Kang Lixing, Di Jun, Luo Xiao, Chen Longqing, Xue Chao, Ma Bowen, Yang Guidong, Tang Jun, Zhou Jiadong, Liu Zheng, Liu Fucai
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.
XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
Small. 2020 Oct;16(42):e2003302. doi: 10.1002/smll.202003302. Epub 2020 Sep 23.
The relatively high recombination rate of charges remains the most critical limiting factor for solar-driven water splitting for hydrogen generation. Herein, a tandem 0D/2D/2D NbS quantum dot/Nb O nanosheet/g-C N flake (NSNOCN) system is designed. Owing to the unique spatial-arrangement and elaborate morphology of 0D NbS , 2D Nb O , and 2D g-C N in the newly designed NSNOCN, plenty of spatial charge-transfer cascades from g-C N to NbS via Nb O are formed to accelerate separation and transfer of charges significantly, thus contributing to a high photocatalytic H generation rate of 13.99 mmol h g (an apparent quantum efficiency of 10.8% at 420 nm), up to 107.6 and 43.7 times by contrast with that of g-C N and Nb O , respectively. This work can provide a new platform in the design of artificial photocatalytic systems with high charge-transfer efficiency.
电荷相对较高的复合率仍然是太阳能驱动水分解制氢最关键的限制因素。在此,设计了一种串联的0D/2D/2D NbS量子点/Nb₂O₅纳米片/g-C₃N₄薄片(NSNOCN)体系。由于新设计的NSNOCN中0D NbS、2D Nb₂O₅和2D g-C₃N₄独特的空间排列和精细的形貌,形成了大量从g-C₃N₄经由Nb₂O₅到NbS的空间电荷转移级联,从而显著加速电荷的分离和转移,进而实现了13.99 mmol h⁻¹ g⁻¹的高光催化产氢速率(在420 nm处表观量子效率为10.8%),相比g-C₃N₄和Nb₂O₅分别提高了107.6倍和43.7倍。这项工作可为设计具有高电荷转移效率的人工光催化系统提供一个新的平台。