Princeton University.
J Exp Psychol Gen. 2021 Apr;150(4):700-709. doi: 10.1037/xge0000920. Epub 2020 Sep 24.
When the outcome is binary, psychologists often use nonlinear modeling strategies such as logit or probit. These strategies are often neither optimal nor justified when the objective is to estimate causal effects of experimental treatments. Researchers need to take extra steps to convert logit and probit coefficients into interpretable quantities, and when they do, these quantities often remain difficult to understand. Odds ratios, for instance, are described as obscure in many textbooks (e.g., Gelman & Hill, 2006, p. 83). I draw on econometric theory and established statistical findings to demonstrate that linear regression is generally the best strategy to estimate causal effects of treatments on binary outcomes. Linear regression coefficients are directly interpretable in terms of probabilities and, when interaction terms or fixed effects are included, linear regression is safer. I review the Neyman-Rubin causal model, which I use to prove analytically that linear regression yields unbiased estimates of treatment effects on binary outcomes. Then, I run simulations and analyze existing data on 24,191 students from 56 middle schools (Paluck, Shepherd, & Aronow, 2013) to illustrate the effectiveness of linear regression. Based on these grounds, I recommend that psychologists use linear regression to estimate treatment effects on binary outcomes. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
当结果是二进制时,心理学家通常使用非线性建模策略,如逻辑或概率。当目标是估计实验处理的因果效应时,这些策略通常既不是最优的,也没有得到证明。研究人员需要采取额外的步骤将逻辑和概率系数转换为可解释的量,当他们这样做时,这些量往往仍然难以理解。例如,比值比在许多教科书中被描述为晦涩难懂(例如,Gelman & Hill,2006,第 83 页)。我借鉴计量经济学理论和已有的统计发现,证明线性回归通常是估计治疗对二进制结果的因果效应的最佳策略。线性回归系数可以直接根据概率进行解释,并且当包含交互项或固定效应时,线性回归更安全。我回顾了 Neyman-Rubin 因果模型,我用它来分析证明线性回归对二进制结果产生无偏的治疗效果估计。然后,我进行模拟并分析了来自 56 所中学的 24191 名学生的现有数据(Paluck、Shepherd 和 Aronow,2013),以说明线性回归的有效性。基于这些理由,我建议心理学家使用线性回归来估计治疗对二进制结果的效果。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。