Alam Sardar B, Yang Jiwoong, Bustillo Karen C, Ophus Colin, Ercius Peter, Zheng Haimei, Chan Emory M
The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Nanoscale. 2020 Sep 28;12(36):18606-18615. doi: 10.1039/d0nr05281g. Epub 2020 Sep 3.
Liquid cell transmission electron microscopy (TEM) enables the direct observation of dynamic physical and chemical processes in liquids at the nanoscale. Quantitative investigations into reactions with fast kinetics and/or multiple reagents will benefit from further advances in liquid cell design that facilitate rapid in situ mixing and precise control over reagent volumes and concentrations. This work reports the development of inorganic-organic nanocapsules for high-resolution TEM imaging of nanoscale reactions in liquids with well-defined zeptoliter volumes. These hybrid nanocapsules, with 48 nm average diameter, consist of a thin layer of gold coating a lipid vesicle. As a model reaction, the nucleation, growth, and diffusion of nanobubbles generated by the radiolysis of water is investigated inside the nanocapsules. When the nanobubbles are sufficiently small (10-25 nm diameter), they are mobile in the nanocapsules, but their movement deviates from Brownian motion, which may result from geometric confinement by the nanocapsules. Gases and fluids can be transported between two nanocapsules when they fuse, demonstrating in situ mixing without using complex microfluidic schemes. The ability to synthesize nanocapsules with controlled sizes and to monitor dynamics simultaneously inside multiple nanocapsules provides opportunities to investigate nanoscale processes such as single nanoparticle synthesis in confined volumes and biological processes such as biomineralization and membrane dynamics.
液池透射电子显微镜(TEM)能够在纳米尺度下直接观察液体中的动态物理和化学过程。对于具有快速动力学和/或多种试剂的反应进行定量研究,将受益于液池设计的进一步改进,这种改进有助于实现快速原位混合,并精确控制试剂体积和浓度。本文报道了一种无机-有机纳米胶囊的研发成果,该纳米胶囊用于对具有明确zeptoliter体积的液体中的纳米级反应进行高分辨率TEM成像。这些平均直径为48 nm的混合纳米胶囊由包裹脂质囊泡的薄金层组成。作为模型反应,研究了纳米胶囊内部由水的辐射分解产生的纳米气泡的成核、生长和扩散过程。当纳米气泡足够小时(直径为10 - 25 nm),它们在纳米胶囊中可移动,但其运动偏离布朗运动,这可能是由纳米胶囊的几何限制导致的。当两个纳米胶囊融合时,气体和流体可以在它们之间传输,这展示了无需使用复杂微流控方案的原位混合。合成具有可控尺寸的纳米胶囊并同时监测多个纳米胶囊内部动态的能力,为研究纳米尺度过程(如在受限体积内的单纳米颗粒合成)以及生物过程(如生物矿化和膜动力学)提供了机会。