Keller Debora, Henninen Trond R, Erni Rolf
Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland.
Nanoscale. 2020 Nov 28;12(44):22511-22517. doi: 10.1039/d0nr06541b. Epub 2020 Nov 11.
Elementary atomic mechanisms underlying nanoparticle growth in liquids are largely unexplored and mostly a subject of conjectures based on theory and indirect experimental insights. Direct, experimental observation of such processes at an atomic level requires imaging with single-atom sensitivity and control over kinetics. Although conventional liquid-cell (scanning) transmission electron microscopy ((S)TEM) enables nanoscale studies of dynamic processes, the visualization of atomic processes in the liquid phase is inhibited owing to the liquid film thickness and its encapsulation, both limiting the achievable spatial resolution. In contrast, by using thin, free-standing ionic liquid nanoreactors, this work shows that the mechanisms controlling and triggering particle growth can be uncovered at an atom-by-atom level. Our observations of growing particle ensembles reveal that diverse growth pathways proceed simultaneously. We record Ostwald ripening and oriented particle coalescence tracked at the atomic scale, which confirm the mechanisms suggested by theory. However, we also identify unexpected growth phenomena and more intricate coalescence events which show competing mechanisms. The diversity of the observed growth processes thus illustrates that growth reactions in liquids, on the atomic scale, are much more complex than predicted by theory. Furthermore, this work demonstrates that free-standing ionic liquids enable (sub-)Ångström resolution imaging of dynamic processes in liquids with single-atom sensitivity, thus providing a powerful alternative approach to conventional liquid-cell (S)TEM.
液体中纳米颗粒生长的基本原子机制在很大程度上尚未被探索,并且大多是基于理论和间接实验见解的推测主题。在原子水平上对这类过程进行直接的实验观察需要具备单原子灵敏度的成像以及对动力学的控制。尽管传统的液体池(扫描)透射电子显微镜((S)TEM)能够对动态过程进行纳米尺度的研究,但由于液膜厚度及其封装,液相中原子过程的可视化受到抑制,这两者都限制了可实现的空间分辨率。相比之下,通过使用薄的、独立的离子液体纳米反应器,这项工作表明可以在逐个原子的水平上揭示控制和触发颗粒生长的机制。我们对生长中的颗粒集合的观察表明,多种生长途径同时进行。我们记录了在原子尺度上追踪到的奥斯特瓦尔德熟化和定向颗粒聚结,这证实了理论所提出的机制。然而,我们也发现了意想不到的生长现象和更复杂的聚结事件,这些事件显示出相互竞争的机制。因此,所观察到的生长过程的多样性表明,在原子尺度上,液体中的生长反应比理论预测的要复杂得多。此外,这项工作表明,独立的离子液体能够以单原子灵敏度对液体中的动态过程进行(亚)埃分辨率成像,从而为传统的液体池(S)TEM提供了一种强大的替代方法。