Öllers Michel C, Swinnen Ans C C, Verhaegen Frank
Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
Med Phys. 2020 Nov;47(11):5829-5837. doi: 10.1002/mp.14485. Epub 2020 Oct 7.
Modern type 'c' dose calculation algorithms like Acuros can predict dose for lung tumors larger than approximately 4 cm with a relative uncertainty up to 5%. However, increasingly better tumor diagnostics are leading to the detection of very small early-stage lung tumors that can be treated with stereotactic body radiotherapy (SBRT) for inoperable patients. This raises the question whether dose algorithms like Acuros can still accurately predict dose within 5% for challenging conditions involving small treatment fields. Current recommendations for Quality Assurance (QA) and dose verification in SBRT treatments are to use phantoms that are as realistic as possible to the clinical situation, although water-equivalent phantoms are still largely used for dose verification. In this work we aim to demonstrate that existing dose verification methods are inadequate for accurate dose verification in very small lung tumors treated with SBRT.
The homogeneous PTW Octavius4D phantom with the Octavius 1000 SRS detector ("Octavius4D phantom") and the heterogeneous CIRS Dynamic Thorax phantom ('CIRS phantom') were used for dose measurements. The CIRS phantom contained different lung-equivalent film-holding cylindrical phantom inserts ("film inserts") with water-equivalent spherical targets with diameters 0.5, 0.75, 1, 2, and 3 cm. Plans were calculated for 6 and 10 MV for each spherical target in the CIRS phantom, resulting in 14 treatment plans. The plans were delivered to both Octavius4D and CIRS phantom to compare measured dose in a commonly used homogeneous and more realistic heterogeneous phantom setup. In addition, treatment plans of seven clinical lung cancer patients with lung tumors below approximately 1.0 cm were irradiated in the heterogeneous CIRS phantom. The actual tumor size within the clinical treatment plans determined the choice of the spherical target size, such that both measurement geometry and clinical target volumes match as closely as possible. The Acuros dose algorithm (version 15.5.11) was used for all dose calculations reporting dose-to-medium using a 0.1-cm-grid size.
The measurement discrepancies in the homogeneous Octavius4D phantom for the fourteen treatment plans were within 1.5%. Dose discrepancies between measurement and treatment planning systems (TPS) for the heterogeneous CIRS phantom increased for both 6 and 10 MV with decreasing target diameters up to 23.7 ± 1.0% for 6 MV and 8.8 ± 1.1% for 10 MV for the smallest target of 0.5 cm in diameter with a 2-mm-CTV-PTV margin. For the seven clinical plans this trend of increasing dose difference with decreasing tumor size is less pronounced although the smallest tumors show the largest differences between measurement and TPS up to 16.6 ± 0.9%.
Current verification methods using homogenous phantoms are not adequate for lung tumors with diameters below approximately 0.75 cm. The current Acuros dose calculation algorithm underestimates dose in very small lung tumors. Dose verification of small lung tumors should be performed in an anthropomorphic lung phantom incorporating a water-equivalent target that matches clinical tumor size as closely as possible.
像Acuros这样的现代“c”型剂量计算算法能够预测直径大于约4厘米的肺部肿瘤的剂量,相对不确定性高达5%。然而,肿瘤诊断技术日益精进,使得越来越多非常小的早期肺部肿瘤被检测出来,这些肿瘤可通过立体定向体部放疗(SBRT)治疗无法手术的患者。这就引发了一个问题,即像Acuros这样的剂量算法在涉及小治疗野的具有挑战性的条件下,是否仍能在5%的范围内准确预测剂量。目前关于SBRT治疗中质量保证(QA)和剂量验证的建议是使用尽可能接近临床情况的体模,尽管水等效体模仍在很大程度上用于剂量验证。在这项工作中,我们旨在证明现有的剂量验证方法不足以对接受SBRT治疗的非常小的肺部肿瘤进行准确的剂量验证。
使用配备Octavius 1000 SRS探测器的均质PTW Octavius4D体模(“Octavius4D体模”)和非均质CIRS动态胸部体模(“CIRS体模”)进行剂量测量。CIRS体模包含不同的肺等效薄膜固定圆柱形体模插入物(“薄膜插入物”),带有直径为0.5、0.75、1、2和3厘米的水等效球形靶标。针对CIRS体模中的每个球形靶标,分别计算了6兆伏和10兆伏的计划,共产生14个治疗计划。将这些计划分别施用于Octavius4D体模和CIRS体模,以比较在常用的均质和更逼真的非均质体模设置下测量的剂量。此外,在非均质CIRS体模中对7例肺部肿瘤直径约1.0厘米以下的临床肺癌患者的治疗计划进行了照射。临床治疗计划中的实际肿瘤大小决定了球形靶标大小的选择,以使测量几何形状和临床靶体积尽可能紧密匹配。所有剂量计算均使用Acuros剂量算法(版本15.5.11),报告使用0.1厘米网格大小的介质剂量。
对于14个治疗计划,均质Octavius4D体模中的测量差异在1.5%以内。对于非均质CIRS体模,6兆伏和10兆伏时测量值与治疗计划系统(TPS)之间的剂量差异均随着靶标直径减小而增加,对于直径最小为0.5厘米且临床靶体积 - 计划靶体积边缘为2毫米的靶标,6兆伏时高达23.7 ± 1.0%,10兆伏时为8.8 ± 1.1%。对于7个临床计划,尽管最小的肿瘤在测量值与TPS之间显示出最大差异,高达16.6 ± 0.9%,但随着肿瘤大小减小剂量差异增加的趋势不太明显。
目前使用均质体模的验证方法不适用于直径约0.75厘米以下的肺部肿瘤。当前的Acuros剂量计算算法会低估非常小的肺部肿瘤的剂量。小肺部肿瘤的剂量验证应在包含尽可能与临床肿瘤大小匹配的水等效靶标的拟人化肺部体模中进行。