Suppr超能文献

不均匀肺体模中呼吸诱导的密度变化的技术和剂量学影响。

Technical and dosimetric implications of respiratory induced density variations in a heterogeneous lung phantom.

机构信息

Medical Physics Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214-3005, USA.

Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY, 14293, USA.

出版信息

Radiat Oncol. 2018 Sep 4;13(1):165. doi: 10.1186/s13014-018-1110-2.

Abstract

BACKGROUND

Stereotactic Body Radiotherapy (SBRT) is an ablative dose delivery technique which requires the highest levels of precision and accuracy. Modeling dose to a lung treatment volume has remained a complex and challenging endeavor due to target motion and the low density of the surrounding media. When coupled together, these factors give rise to pulmonary induced tissue heterogeneities which can lead to inaccuracies in dose computation. This investigation aims to determine which combination of imaging techniques and computational algorithms best compensates for time dependent lung target displacements.

METHODS

A Quasar phantom was employed to simulate respiratory motion for target ranges up to 3 cm. 4DCT imaging was used to generate Average Intensity Projection (AIP), Free Breathing (FB), and Maximum Intensity Projection (MIP) image sets. In addition, we introduce and compare a fourth dataset for dose computation based on a novel phase weighted density (PWD) technique. All plans were created using Eclipse version 13.6 treatment planning system and calculated using the Analytical Anisotropic Algorithm and Acuros XB. Dose delivery was performed using Truebeam STx linear accelerator where radiochromic film measurements were accessed using gamma analysis to compare planned versus delivered dose.

RESULTS

In the most extreme case scenario, the mean CT difference between FB and MIP datasets was found to be greater than 200 HU. The near maximum dose discrepancies between AAA and AXB algorithms were determined to be marginal (< 2.2%), with a greater variability occurring within the near minimum dose regime (< 7%). Radiochromatic film verification demonstrated all AIP and FB based computations exceeded 98% passing rates under conventional radiotherapy tolerances (gamma 3%, 3 mm). Under more stringent SBRT tolerances (gamma 3%, 1 mm), the AIP and FB based treatment plans exhibited higher pass rates (> 85%) when compared to MIP and PWD (< 85%) for AAA computations. For AXB, however, the delivery accuracy for all datasets were greater than 85% (gamma 3%,1 mm), with a corresponding reduction in overall lung irradiation.

CONCLUSIONS

Despite the substantial density variations between computational datasets over an extensive range of target movement, the dose difference between CT datasets is small and could not be quantified with ion chamber. Radiochromatic film analysis suggests the optimal CT dataset is dependent on the dose algorithm used for evaluation. With AAA, AIP and FB resulted in the best conformance between measured versus calculated dose for target motion ranging up to 3 cm under both conventional and SBRT tolerance criteria. With AXB, pass rates improved for all datasets with the PWD technique demonstrating slightly better conformity over AIP and FB based computations (gamma 3%, 1 mm). As verified in previous studies, our results confirm a clear advantage in delivery accuracy along with a relative decrease in calculated dose to the lung when using Acuros XB over AAA.

摘要

背景

立体定向体放射治疗(SBRT)是一种消融剂量传递技术,需要最高水平的精度和准确性。由于目标运动和周围介质的低密度,对肺治疗体积进行剂量建模一直是一项复杂且具有挑战性的工作。当这些因素结合在一起时,会导致肺诱导组织不均匀性,从而导致剂量计算不准确。本研究旨在确定哪种成像技术和计算算法的组合最能补偿随时间变化的肺靶区位移。

方法

Quasar 体模用于模拟靶区范围高达 3cm 的呼吸运动。4DCT 成像用于生成平均强度投影(AIP)、自由呼吸(FB)和最大强度投影(MIP)图像集。此外,我们引入并比较了一种基于新的相位加权密度(PWD)技术的第四种剂量计算数据集。所有计划均使用 Eclipse 版本 13.6 治疗计划系统创建,并使用分析各向异性算法和 Acuros XB 进行计算。使用 Truebeam STx 直线加速器进行剂量输送,使用伽马分析访问放射色胶片测量值,以比较计划剂量与输送剂量。

结果

在最极端的情况下,发现 FB 和 MIP 数据集之间的平均 CT 差异大于 200HU。AAA 和 AXB 算法之间的近最大剂量差异被确定为边缘(<2.2%),近最小剂量范围内的变化更大(<7%)。放射色胶片验证表明,在常规放疗耐受度下(伽马 3%,3mm),所有基于 AIP 和 FB 的计算都超过了 98%的通过率。在更严格的 SBRT 耐受度下(伽马 3%,1mm),与 MIP 和 PWD(<85%)相比,基于 AIP 和 FB 的治疗计划显示出更高的通过率(>85%),用于 AAA 计算。然而,对于 AXB,所有数据集的输送精度均大于 85%(伽马 3%,1mm),同时整体肺照射量也相应减少。

结论

尽管在广泛的靶区运动范围内,计算数据集之间存在显著的密度变化,但 CT 数据集之间的剂量差异很小,无法用离子室进行量化。放射色胶片分析表明,最佳 CT 数据集取决于用于评估的剂量算法。对于最大靶区运动达 3cm 的情况,AAA 下,AIP 和 FB 分别用于计算剂量,与测量剂量之间的一致性最好,符合常规和 SBRT 耐受标准。对于 AXB,所有数据集的通过率都有所提高,而 PWD 技术比 AIP 和 FB 基于计算的方法显示出更好的一致性(伽马 3%,1mm)。正如先前研究证实的那样,我们的结果证实,与 AAA 相比,在使用 Acuros XB 时,输送精度有明显提高,同时肺内计算剂量相对降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2e/6124019/06999d0d3ac5/13014_2018_1110_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验