Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria.
Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India.
Nat Plants. 2022 Nov;8(11):1304-1316. doi: 10.1038/s41477-022-01244-5. Epub 2022 Oct 27.
The global carbon and water cycles are governed by the coupling of CO and water vapour exchanges through the leaves of terrestrial plants, controlled by plant adaptations to balance carbon gains and hydraulic risks. We introduce a trait-based optimality theory that unifies the treatment of stomatal responses and biochemical acclimation of plants to environments changing on multiple timescales. Tested with experimental data from 18 species, our model successfully predicts the simultaneous decline in carbon assimilation rate, stomatal conductance and photosynthetic capacity during progressive soil drought. It also correctly predicts the dependencies of gas exchange on atmospheric vapour pressure deficit, temperature and CO. Model predictions are also consistent with widely observed empirical patterns, such as the distribution of hydraulic strategies. Our unified theory opens new avenues for reliably modelling the interactive effects of drying soil and rising atmospheric CO on global photosynthesis and transpiration.
全球碳和水循环受陆地植物叶片通过 CO 和水蒸气交换的耦合控制,这是由植物适应平衡碳增益和水力风险来控制的。我们引入了一种基于特征的最优性理论,该理论统一了处理气孔响应和植物对多时间尺度环境变化的生化适应的方法。用 18 个物种的实验数据进行检验,我们的模型成功地预测了在渐进土壤干旱过程中,碳同化率、气孔导度和光合能力的同时下降。它还正确预测了气体交换对大气水汽压亏缺、温度和 CO 的依赖性。模型预测也与广泛观察到的经验模式一致,如水力策略的分布。我们的统一理论为可靠地模拟干燥土壤和大气 CO 上升对全球光合作用和蒸腾作用的相互影响开辟了新的途径。