Suppr超能文献

重塑时间:SNF2 家族 DNA 转位酶在复制叉代谢和人类疾病中的作用。

Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease.

机构信息

Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.

Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.

出版信息

DNA Repair (Amst). 2020 Nov;95:102943. doi: 10.1016/j.dnarep.2020.102943. Epub 2020 Aug 15.

Abstract

Over the course of DNA replication, DNA lesions, transcriptional intermediates and protein-DNA complexes can impair the progression of replication forks, thus resulting in replication stress. Failure to maintain replication fork integrity in response to replication stress leads to genomic instability and predisposes to the development of cancer and other genetic disorders. Multiple DNA damage and repair pathways have evolved to allow completion of DNA replication following replication stress, thus preserving genomic integrity. One of the processes commonly induced in response to replication stress is fork reversal, which consists in the remodeling of stalled replication forks into four-way DNA junctions. In normal conditions, fork reversal slows down replication fork progression to ensure accurate repair of DNA lesions and facilitates replication fork restart once the DNA lesions have been removed. However, in certain pathological situations, such as the deficiency of DNA repair factors that protect regressed forks from nuclease-mediated degradation, fork reversal can cause genomic instability. In this review, we describe the complex molecular mechanisms regulating fork reversal, with a focus on the role of the SNF2-family fork remodelers SMARCAL1, ZRANB3 and HLTF, and highlight the implications of fork reversal for tumorigenesis and cancer therapy.

摘要

在 DNA 复制过程中,DNA 损伤、转录中间体和蛋白-DNA 复合物会损害复制叉的前进,从而导致复制压力。如果不能对复制压力做出反应,维持复制叉的完整性,就会导致基因组不稳定,增加癌症和其他遗传疾病的发病风险。为了在复制压力后完成 DNA 复制,从而保持基因组完整性,已经进化出多种 DNA 损伤和修复途径。复制压力应答过程中常见的一个过程是叉反转,它由停滞的复制叉重构为四链 DNA 连接点组成。在正常情况下,叉反转会减缓复制叉的前进速度,以确保对 DNA 损伤进行准确的修复,并在 DNA 损伤被清除后促进复制叉的重新启动。然而,在某些病理情况下,如缺乏保护退行叉免受核酸酶介导降解的 DNA 修复因子,叉反转可能会导致基因组不稳定。在这篇综述中,我们描述了调节叉反转的复杂分子机制,重点介绍了 SNF2 家族的叉重塑酶 SMARCAL1、ZRANB3 和 HLTF 的作用,并强调了叉反转对肿瘤发生和癌症治疗的影响。

相似文献

1
Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease.
DNA Repair (Amst). 2020 Nov;95:102943. doi: 10.1016/j.dnarep.2020.102943. Epub 2020 Aug 15.
3
Functions of SMARCAL1, ZRANB3, and HLTF in maintaining genome stability.
Crit Rev Biochem Mol Biol. 2017 Dec;52(6):696-714. doi: 10.1080/10409238.2017.1380597. Epub 2017 Sep 28.
4
The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability.
Mol Cell. 2021 Jan 7;81(1):198-211.e6. doi: 10.1016/j.molcel.2020.11.007. Epub 2020 Dec 8.
5
The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression.
J Biol Chem. 2018 Jun 1;293(22):8484-8494. doi: 10.1074/jbc.RA118.002905. Epub 2018 Apr 11.
6
Mechanisms and regulation of replication fork reversal.
DNA Repair (Amst). 2024 Sep;141:103731. doi: 10.1016/j.dnarep.2024.103731. Epub 2024 Jul 22.
7
Substrate-selective repair and restart of replication forks by DNA translocases.
Cell Rep. 2013 Jun 27;3(6):1958-69. doi: 10.1016/j.celrep.2013.05.002. Epub 2013 Jun 6.
9
RADX prevents genome instability by confining replication fork reversal to stalled forks.
Mol Cell. 2021 Jul 15;81(14):3007-3017.e5. doi: 10.1016/j.molcel.2021.05.014. Epub 2021 Jun 8.

引用本文的文献

1
2
Prime Editing: Mechanistic Insights and DNA Repair Modulation.
Cells. 2025 Feb 13;14(4):277. doi: 10.3390/cells14040277.
3
RAD52 and ERCC6L/PICH have a compensatory relationship for genome stability in mitosis.
PLoS Genet. 2024 Nov 19;20(11):e1011479. doi: 10.1371/journal.pgen.1011479. eCollection 2024 Nov.
5
Disparate requirements for RAD54L in replication fork reversal.
Nucleic Acids Res. 2024 Nov 11;52(20):12390-12404. doi: 10.1093/nar/gkae828.
6
Mechanisms and regulation of replication fork reversal.
DNA Repair (Amst). 2024 Sep;141:103731. doi: 10.1016/j.dnarep.2024.103731. Epub 2024 Jul 22.
7
Replication stress as a driver of cellular senescence and aging.
Commun Biol. 2024 May 22;7(1):616. doi: 10.1038/s42003-024-06263-w.
9
SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion.
Cell. 2024 Feb 15;187(4):861-881.e32. doi: 10.1016/j.cell.2024.01.008. Epub 2024 Jan 31.
10
SMC5/6 Promotes Replication Fork Stability via Negative Regulation of the COP9 Signalosome.
Int J Mol Sci. 2024 Jan 12;25(2):952. doi: 10.3390/ijms25020952.

本文引用的文献

1
Super-resolution visualization of distinct stalled and broken replication fork structures.
PLoS Genet. 2020 Dec 28;16(12):e1009256. doi: 10.1371/journal.pgen.1009256. eCollection 2020 Dec.
2
3
Detection of base analogs incorporated during DNA replication by nanopore sequencing.
Nucleic Acids Res. 2020 Sep 4;48(15):e88. doi: 10.1093/nar/gkaa517.
4
Inhibition of the translesion synthesis polymerase REV1 exploits replication gaps as a cancer vulnerability.
Sci Adv. 2020 Jun 10;6(24):eaaz7808. doi: 10.1126/sciadv.aaz7808. eCollection 2020 Jun.
6
FORK-seq: replication landscape of the Saccharomyces cerevisiae genome by nanopore sequencing.
Genome Biol. 2020 May 26;21(1):125. doi: 10.1186/s13059-020-02013-3.
7
HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis.
Mol Cell. 2020 Jun 18;78(6):1237-1251.e7. doi: 10.1016/j.molcel.2020.04.031. Epub 2020 May 21.
9
Distinct roles of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links.
Genes Dev. 2020 Jun 1;34(11-12):832-846. doi: 10.1101/gad.336446.120. Epub 2020 Apr 30.
10
Reconstitution of translesion synthesis reveals a mechanism of eukaryotic DNA replication restart.
Nat Struct Mol Biol. 2020 May;27(5):450-460. doi: 10.1038/s41594-020-0418-4. Epub 2020 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验