Ettaieb Madeleine H T, van Kuijk Sander M J, de Wit-Pastoors Annelies, Feelders Richard A, Corssmit Eleonora P M, Eekhoff Elisabeth M W, van der Valk Paul, Timmers Henri J L M, Kerstens Michiel N, Klümpen Heinz-Josef, Leeuwaarde van Rachel S, Havekes Bas, Haak Harm R
Department of Internal Medicine, Division of Endocrinology, Máxima Medical Center, 5631 Eindhoven/Veldhoven, The Netherlands.
Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, 6229 Maastricht, The Netherlands.
Cancers (Basel). 2020 Sep 22;12(9):2720. doi: 10.3390/cancers12092720.
Adrenocortical carcinoma (ACC) has an incidence of about 1.0 per million per year. In general, survival of patients with ACC is limited. Predicting survival outcome at time of diagnosis is a clinical challenge. The aim of this study was to develop and internally validate a clinical prediction model for ACC-specific mortality. Data for this retrospective cohort study were obtained from the nine centers of the Dutch Adrenal Network (DAN). Patients who presented with ACC between 1 January 2004 and 31 October 2013 were included. We used multivariable Cox proportional hazards regression to compute the coefficients for the prediction model. Backward stepwise elimination was performed to derive a more parsimonious model. The performance of the initial prediction model was quantified by measures of model fit, discriminative ability, and calibration. We undertook an internal validation step to counteract the possible overfitting of our model. A total of 160 patients were included in the cohort. The median survival time was 35 months, and interquartile range (IQR) 50.7 months. The multivariable modeling yielded a prediction model that included age, modified European Network for the Study of Adrenal Tumors (mENSAT) stage, and radical resection. The c-statistic was 0.77 (95% Confidence Interval: 0.72, 0.81), indicating good predictive performance. We developed a clinical prediction model for ACC-specific mortality. ACC mortality can be estimated using a relatively simple clinical prediction model with good discriminative ability and calibration.
肾上腺皮质癌(ACC)的发病率约为每年百万分之一。总体而言,ACC患者的生存期有限。在诊断时预测生存结果是一项临床挑战。本研究的目的是开发并在内部验证一个针对ACC特异性死亡率的临床预测模型。这项回顾性队列研究的数据来自荷兰肾上腺网络(DAN)的九个中心。纳入了2004年1月1日至2013年10月31日期间出现ACC的患者。我们使用多变量Cox比例风险回归来计算预测模型的系数。进行向后逐步淘汰以得出更简洁的模型。通过模型拟合度、判别能力和校准等指标对初始预测模型的性能进行量化。我们进行了内部验证步骤以抵消模型可能的过度拟合。该队列共纳入160例患者。中位生存时间为35个月,四分位间距(IQR)为50.7个月。多变量建模得出一个预测模型,该模型包括年龄、改良欧洲肾上腺肿瘤研究网络(mENSAT)分期和根治性切除术。c统计量为0.77(95%置信区间:0.72,0.81),表明具有良好的预测性能。我们开发了一个针对ACC特异性死亡率的临床预测模型。可以使用一个具有良好判别能力和校准的相对简单的临床预测模型来估计ACC死亡率。