Suppr超能文献

概率记录链接简介,重点介绍世界贸易中心注册处的链接处理。

An Introduction to Probabilistic Record Linkage with a Focus on Linkage Processing for WTC Registries.

机构信息

Department of Mathematics and Statistics, Slippery Rock University, Slippery Rock, PA 16057, USA.

National Opinion Research Center, Boston, MA 02114, USA.

出版信息

Int J Environ Res Public Health. 2020 Sep 22;17(18):6937. doi: 10.3390/ijerph17186937.

Abstract

Since its post-World War II inception, the science of record linkage has grown exponentially and is used across industrial, governmental, and academic agencies. The academic fields that rely on record linkage are diverse, ranging from history to public health to demography. In this paper, we introduce the different types of data linkage and give a historical context to their development. We then introduce the three types of underlying models for probabilistic record linkage: Fellegi-Sunter-based methods, machine learning methods, and Bayesian methods. Practical considerations, such as data standardization and privacy concerns, are then discussed. Finally, recommendations are given for organizations developing or maintaining record linkage programs, with an emphasis on organizations measuring long-term complications of disasters, such as 9/11.

摘要

自二战后创立以来,记录链接科学呈指数级增长,并被广泛应用于工业、政府和学术机构。依赖记录链接的学术领域多种多样,从历史学到公共卫生学再到人口统计学。在本文中,我们介绍了不同类型的数据链接,并为它们的发展提供了历史背景。然后,我们介绍了概率记录链接的三种基础模型:费雷利-桑特(Fellegi-Sunter)方法、机器学习方法和贝叶斯方法。接下来讨论了实际考虑因素,例如数据标准化和隐私问题。最后,为正在开发或维护记录链接计划的组织提供了建议,重点是那些正在衡量 9/11 等灾难长期并发症的组织。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcd0/7558187/2c5a22d632cb/ijerph-17-06937-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验