Suppr超能文献

前生物化学网络中的合成连通性、涌现和自我再生。

Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry.

机构信息

Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland.

Allchemy, Inc., Highland, IN, USA.

出版信息

Science. 2020 Sep 25;369(6511). doi: 10.1126/science.aaw1955.

Abstract

The challenge of prebiotic chemistry is to trace the syntheses of life's key building blocks from a handful of primordial substrates. Here we report a forward-synthesis algorithm that generates a full network of prebiotic chemical reactions accessible from these substrates under generally accepted conditions. This network contains both reported and previously unidentified routes to biotic targets, as well as plausible syntheses of abiotic molecules. It also exhibits three forms of nontrivial chemical emergence, as the molecules within the network can act as catalysts of downstream reaction types; form functional chemical systems, including self-regenerating cycles; and produce surfactants relevant to primitive forms of biological compartmentalization. To support these claims, computer-predicted, prebiotic syntheses of several biotic molecules as well as a multistep, self-regenerative cycle of iminodiacetic acid were validated by experiment.

摘要

前生物化学的挑战在于追溯生命关键构建块的合成,这些构建块来自少数原始基质。在这里,我们报告了一种正向合成算法,该算法可以根据普遍接受的条件,从这些基质中生成一个完整的前生物化学反应网络。该网络包含了报道和以前未识别的生物目标途径,以及对非生物分子的合理合成。它还表现出三种非平凡的化学涌现形式,因为网络中的分子可以作为下游反应类型的催化剂;形成功能化学系统,包括自我再生循环;并产生与原始生物分隔形式相关的表面活性剂。为了支持这些说法,通过实验验证了计算机预测的几种生物分子的前生物合成,以及亚氨基二乙酸的多步自我再生循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验