文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用磁性纳米颗粒调节类蛋白电脉冲活动

Modulation of Proteinoid Electrical Spiking Activity with Magnetic Nanoparticles.

作者信息

Mougkogiannis Panagiotis, Adamatzky Andrew

机构信息

Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.

出版信息

Langmuir. 2025 Jun 10;41(22):13974-13992. doi: 10.1021/acs.langmuir.5c00932. Epub 2025 May 29.


DOI:10.1021/acs.langmuir.5c00932
PMID:40443122
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12164352/
Abstract

This study looks at how proteinoid microspheres and their magnetic polystyrene (PS) hybrids behave electrochemically. It also explores their computational abilities. These systems show complex membrane potential dynamics. Pure proteinoids spike without external influence, ranging from 5.39 to 9.81 mV. In contrast, PS-modified variants exhibit sinusoidal oscillations. Their behavior can be described by the equation () =  sin(2π) + , where is about 1.5 mV and is around 0.05 Hz. Electrochemical impedance spectroscopy shows key differences in charge transport. The PS-modified systems have better conductivity: || = 7.22 × 10 Ω compared to || = 2.03 × 10 Ω. The systems can perform Boolean logic operations with a 5 mV threshold. They show time-dependent gate behavior, making them suitable for unconventional computing applications. Doping with Fe(NO) changes the electrical response. This happens through redox processes where Fe gains an electron to become Fe. As a result, there are greater potential differences and more complex timing behaviors. These findings help us understand proteinoid-based bioelectricity better. They also show how these building blocks can be used in biomolecular computing systems.

摘要

本研究着眼于类蛋白微球及其磁性聚苯乙烯(PS)杂化物的电化学行为。它还探索了它们的计算能力。这些系统表现出复杂的膜电位动态。纯类蛋白在无外部影响的情况下会产生尖峰,范围为5.39至9.81毫伏。相比之下,PS修饰的变体表现出正弦振荡。它们的行为可以用方程() =  sin(2π) + 来描述,其中约为1.5毫伏,约为0.05赫兹。电化学阻抗谱显示了电荷传输方面的关键差异。PS修饰的系统具有更好的导电性:|| = 7.22 × 10Ω,而|| = 2.03 × 10Ω。这些系统可以在5毫伏阈值下执行布尔逻辑运算。它们表现出与时间相关的门行为,使其适用于非常规计算应用。用Fe(NO)掺杂会改变电响应。这是通过氧化还原过程发生的,其中Fe获得一个电子变成Fe。结果,存在更大的电位差和更复杂的定时行为。这些发现有助于我们更好地理解基于类蛋白的生物电。它们还展示了这些构建块如何用于生物分子计算系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/348cc74c217b/la5c00932_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/e07780f0d173/la5c00932_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/fe5bcacb6338/la5c00932_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/bd2daa77720b/la5c00932_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/db28d13d7e74/la5c00932_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/50e9bfa4d2bd/la5c00932_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/95878e03b662/la5c00932_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/f3a9ee7afded/la5c00932_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/79e972e61014/la5c00932_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/1b0a2000e18e/la5c00932_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/8bd0d3cbf466/la5c00932_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/80dcc304572c/la5c00932_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/a6e4112d620a/la5c00932_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/1b61f0daf234/la5c00932_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/5d1e05b806ad/la5c00932_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/348cc74c217b/la5c00932_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/e07780f0d173/la5c00932_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/fe5bcacb6338/la5c00932_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/bd2daa77720b/la5c00932_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/db28d13d7e74/la5c00932_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/50e9bfa4d2bd/la5c00932_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/95878e03b662/la5c00932_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/f3a9ee7afded/la5c00932_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/79e972e61014/la5c00932_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/1b0a2000e18e/la5c00932_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/8bd0d3cbf466/la5c00932_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/80dcc304572c/la5c00932_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/a6e4112d620a/la5c00932_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/1b61f0daf234/la5c00932_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/5d1e05b806ad/la5c00932_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/488a/12164352/348cc74c217b/la5c00932_0015.jpg

相似文献

[1]
Modulation of Proteinoid Electrical Spiking Activity with Magnetic Nanoparticles.

Langmuir. 2025-6-10

[2]
Learning in ensembles of proteinoid microspheres.

R Soc Open Sci. 2023-10-11

[3]
On interaction of proteinoids with simulated neural networks.

Biosystems. 2024-3

[4]
Transfer functions of proteinoid microspheres.

Biosystems. 2023-5

[5]
Proton Pump Inhibitor Omeprazole Alters the Spiking Characteristics of Proteinoids.

ACS Omega. 2025-1-27

[6]
Self-Organizing Proteinoid-Actin Networks: Structure and Voltage Dynamics.

ACS Omega. 2025-5-5

[7]
On Effect of Chloroform on Electrical Activity of Proteinoids.

Biomimetics (Basel). 2024-6-23

[8]
Logical gates in ensembles of proteinoid microspheres.

PLoS One. 2023

[9]
Thermosensory Spiking Activity of Proteinoid Microspheres Cross-Linked by Actin Filaments.

Langmuir. 2024-6-18

[10]
Proteinoids-Polyaniline Interaction with Stimulated Neurons on Living and Plastic Surfaces.

ACS Omega. 2024-11-5

本文引用的文献

[1]
Magnetic Iron Oxide Nanoparticles Enhance Exosome Production by Upregulating Exosome Transport and Secretion Pathways.

ACS Appl Mater Interfaces. 2024-12-11

[2]
Modeling of Magnetic Scaffolds as Drug Delivery Platforms for Tissue Engineering and Cancer Therapy.

Bioengineering (Basel). 2024-6-6

[3]
Magnetogenetics as a promising tool for controlling cellular signaling pathways.

J Nanobiotechnology. 2024-6-10

[4]
Proto-neural networks from thermal proteins.

Biochem Biophys Res Commun. 2024-5-21

[5]
Learning in ensembles of proteinoid microspheres.

R Soc Open Sci. 2023-10-11

[6]
A Soft Capsule for Magnetically Driven Drug Delivery Based on a Hard-Magnetic Elastomer Foam.

ACS Biomater Sci Eng. 2023-12-11

[7]
Life Unknown: Preliminary Scheme for a Magnetotrophic Organism.

Life (Basel). 2023-6-26

[8]
Artificial Action Potential and Ionic Power Device Inspired by Ion Channels and Excitable Cell.

Adv Sci (Weinh). 2023-6

[9]
Low frequency electrical waves in ensembles of proteinoid microspheres.

Sci Rep. 2023-2-3

[10]
Magnetoelectric effect: principles and applications in biology and medicine- a review.

Mater Today Bio. 2021-10-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索