Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai, 400 076, India.
Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli, PO 140 306, Punjab, India.
Sci Rep. 2020 Sep 24;10(1):15582. doi: 10.1038/s41598-020-72476-8.
We explore the dynamics of a group of unconnected chaotic relaxation oscillators realized by mercury beating heart systems, coupled to a markedly different common external chaotic system realized by an electronic circuit. Counter-intuitively, we find that this single dissimilar chaotic oscillator manages to effectively steer the group of oscillators on to steady states, when the coupling is sufficiently strong. We further verify this unusual observation in numerical simulations of model relaxation oscillator systems mimicking this interaction through coupled differential equations. Interestingly, the ensemble of oscillators is suppressed most efficiently when coupled to a completely dissimilar chaotic external system, rather than to a regular external system or an external system identical to those of the group. So this experimentally demonstrable controllability of groups of oscillators via a distinct external system indicates a potent control strategy. It also illustrates the general principle that symmetry in the emergent dynamics may arise from asymmetry in the constituent systems, suggesting that diversity or heterogeneity may have a crucial role in aiding regularity in interactive systems.
我们探索了由汞跳动心脏系统实现的一组不相连的混沌松弛振荡器的动力学,这些系统与通过电子电路实现的明显不同的公共外部混沌系统耦合。反直觉的是,当耦合足够强时,我们发现这个单一的不相似混沌振荡器成功地将振荡器组引导到稳定状态。我们通过模拟该相互作用的耦合微分方程的模型松弛振荡器系统的数值模拟进一步验证了这一不寻常的观察结果。有趣的是,当耦合到完全不同的混沌外部系统时,而不是常规外部系统或与组内相同的外部系统时,振荡器的整体被抑制得最有效。因此,通过独特的外部系统对振荡器组进行的这种可实验证明的可控性表明了一种有效的控制策略。它还说明了在涌现动力学中出现对称性可能来自组成系统中的不对称性的一般原理,这表明多样性或异质性可能在帮助交互式系统中的规则性方面发挥关键作用。