Suppr超能文献

基于氧化石墨烯-噬菌体的自组装多孔复合材料的纳米力学。

Nanomechanics of graphene oxide-bacteriophage based self-assembled porous composites.

机构信息

Queen Mary University of London, School of Engineering and Materials Science, London, E1 4NS, UK.

Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, B15 2TT, UK.

出版信息

Sci Rep. 2020 Sep 24;10(1):15618. doi: 10.1038/s41598-020-72372-1.

Abstract

Graphene oxide, integrated with the filamentous bacteriophage M13, forms a 3D large-scale multifunctional porous structure by self-assembly, with considerable potential for applications. We performed Raman spectroscopy under pressure on this porous composite to understand its fundamental mechanics. The results show that at low applied pressure, the [Formula: see text] bonds of graphene oxide stiffen very little with increasing pressure, suggesting a complicated behaviour of water intercalated between the graphene layers. The key message of this paper is that water in a confined space can have a significant impact on the nanostructure that hosts it. We introduced carbon nanotubes during the self-assembly of graphene oxide and M13, and a similar porous macro-structure was observed. However, in the presence of carbon nanotubes, pressure is transmitted to the [Formula: see text] bonds of graphene oxide straightforwardly as in graphite. The electrical conductivity of the composite containing carbon nanotubes is improved by about 30 times at a bias voltage of 10 V. This observation suggests that the porous structure has potential in applications where good electrical conductivity is desired, such as sensors and batteries.

摘要

氧化石墨烯与丝状噬菌体 M13 集成,通过自组装形成具有相当应用潜力的 3D 大规模多功能多孔结构。我们对这种多孔复合材料进行了压力下的拉曼光谱研究,以了解其基本力学性能。结果表明,在低外加压力下,氧化石墨烯的 [Formula: see text] 键随压力增加几乎没有变硬,这表明插层在石墨烯层之间的水具有复杂的行为。本文的关键信息是,受限空间中的水会对容纳它的纳米结构产生重大影响。我们在氧化石墨烯和 M13 的自组装过程中引入了碳纳米管,并观察到了类似的多孔宏观结构。然而,在存在碳纳米管的情况下,压力像在石墨中一样直接传递到氧化石墨烯的 [Formula: see text] 键上。在 10 V 的偏置电压下,含有碳纳米管的复合材料的电导率提高了约 30 倍。这一观察结果表明,这种多孔结构在需要良好导电性的应用中具有潜力,例如传感器和电池。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89f/7515913/06b7f2747639/41598_2020_72372_Fig1_HTML.jpg

相似文献

1
Nanomechanics of graphene oxide-bacteriophage based self-assembled porous composites.
Sci Rep. 2020 Sep 24;10(1):15618. doi: 10.1038/s41598-020-72372-1.
2
Multifunctional graphene oxide-bacteriophage based porous three-dimensional micro-nanocomposites.
Nanoscale. 2019 Jul 28;11(28):13318-13329. doi: 10.1039/c9nr03670a. Epub 2019 Jul 4.
3
Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
Acc Chem Res. 2015 Jun 16;48(6):1666-75. doi: 10.1021/acs.accounts.5b00117. Epub 2015 Jun 4.
5
Nanostructured porous graphene and its composites for energy storage applications.
Nano Converg. 2017;4(1):29. doi: 10.1186/s40580-017-0123-0. Epub 2017 Oct 30.
6
Composite Graphene-Containing Porous Materials from Carbon for Capacitive Deionization of Water.
Molecules. 2020 Jun 4;25(11):2620. doi: 10.3390/molecules25112620.

引用本文的文献

1
Unveiling the Sorption Properties of Graphene Oxide-M13 Bacteriophage Aerogels for Advanced Sensing and Environmental Applications.
ACS Appl Mater Interfaces. 2024 Dec 25;16(51):70804-70817. doi: 10.1021/acsami.4c16202. Epub 2024 Dec 11.
4
Graphene Oxide and Biomolecules for the Production of Functional 3D Graphene-Based Materials.
Front Mol Biosci. 2022 Mar 15;9:774097. doi: 10.3389/fmolb.2022.774097. eCollection 2022.
5
Improvements in the production of purified M13 bacteriophage bio-nanoparticle.
Sci Rep. 2020 Oct 29;10(1):18538. doi: 10.1038/s41598-020-75205-3.

本文引用的文献

1
Multifunctional graphene oxide-bacteriophage based porous three-dimensional micro-nanocomposites.
Nanoscale. 2019 Jul 28;11(28):13318-13329. doi: 10.1039/c9nr03670a. Epub 2019 Jul 4.
2
Monodisperse Gold Nanorods for High-Pressure Refractive Index Sensing.
J Phys Chem Lett. 2019 Apr 4;10(7):1587-1593. doi: 10.1021/acs.jpclett.9b00636. Epub 2019 Mar 22.
4
High-pressure chemical biology and biotechnology.
Chem Rev. 2014 Jul 23;114(14):7239-67. doi: 10.1021/cr400204z. Epub 2014 Jun 2.
5
Unimpeded permeation of water through helium-leak-tight graphene-based membranes.
Science. 2012 Jan 27;335(6067):442-4. doi: 10.1126/science.1211694.
6
Graphene-based materials: synthesis, characterization, properties, and applications.
Small. 2011 Jul 18;7(14):1876-902. doi: 10.1002/smll.201002009. Epub 2011 Jun 1.
7
Rapid acquisition of Gigapascal-high-pressure resistance by Escherichia coli.
mBio. 2011 Jan 25;2(1):e00130-10. doi: 10.1128/mBio.00130-10.
8
Structural and mechanical properties of TTR105-115 amyloid fibrils from compression experiments.
Biophys J. 2011 Jan 5;100(1):193-7. doi: 10.1016/j.bpj.2010.11.052.
9
Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels.
ACS Nano. 2010 Dec 28;4(12):7358-62. doi: 10.1021/nn1027104. Epub 2010 Nov 16.
10
Pressure-induced insertion of liquid alcohols into graphite oxide structure.
J Am Chem Soc. 2009 Dec 30;131(51):18445-9. doi: 10.1021/ja907492s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验