Stokes Kate, Sun Yiwei, Thomas Jarrod L, Passaretti Paolo, White Henry, Goldberg Oppenheimer Pola
School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Paragraf Limited, Cambridge, PE28 3EB, UK.
Discov Nano. 2024 Sep 18;19(1):152. doi: 10.1186/s11671-024-04101-w.
Graphene oxide (GO) and M13 bacteriophage can self-assemble to form ultra-low density porous structures, known as GraPhage13 aerogels (GPA). Due to the insulating nature of GPA and the challenges in producing highly conductive aerogels, it is paramount to explore ways to enhance the conductivity of GPA. Herein, we have developed a method to enhance the conductivity of GPA, via the integration and optimisation of 5 nm and 20 nm diameter gold nanoparticles (AuNPs) into the aerogel structure and systematically analysed the morphology, composition and spectroscopic properties of the resulting GPA-Au nanocomposite. The fabricated GPA-Au nanocomposites exhibited remarkable increases in conductivity, with the integration of 5 nm AuNPs leading to a 53-fold increase compared to GPA, achieving a performance of up to 360 nS/cm, which is within the range suitable for miniaturised semiconductor devices. The mechanism behind the conductivity enhancement was further investigated and attributed to GO-AuNP interactions increasing the carrier density by introducing new energy levels in the GO band gap or shifting its Fermi level towards the conduction band. These findings demonstrate the potential of functionalised AuNPs to significantly improve the electrical properties of GPA, paving the way for their application in gas sensors for biological and chemical detection and a new range of advanced semiconductor devices.
氧化石墨烯(GO)和M13噬菌体可以自组装形成超低密度多孔结构,即所谓的GraPhage13气凝胶(GPA)。由于GPA具有绝缘性,且在制备高导电气凝胶方面存在挑战,因此探索提高GPA导电性的方法至关重要。在此,我们开发了一种通过将直径为5纳米和20纳米的金纳米颗粒(AuNP)整合并优化到气凝胶结构中来提高GPA导电性的方法,并系统地分析了所得GPA-Au纳米复合材料的形态、组成和光谱性质。制备的GPA-Au纳米复合材料的导电性显著提高,与GPA相比,整合5纳米的AuNP导致导电性提高了53倍,达到了高达360纳西门子/厘米的性能,这在适合小型化半导体器件的范围内。进一步研究了导电性增强背后的机制,归因于GO-AuNP相互作用通过在GO带隙中引入新的能级或将其费米能级向导带移动来增加载流子密度。这些发现证明了功能化AuNP在显著改善GPA电学性能方面的潜力,为其在生物和化学检测气体传感器以及一系列新型先进半导体器件中的应用铺平了道路。