Suppr超能文献

从血红色壳囊孢中分离得到 GH11 内切木聚糖酶的高分辨率晶体结构和生化特性研究。

High-resolution crystal structure and biochemical characterization of a GH11 endoxylanase from Nectria haematococca.

机构信息

Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a. Notkestr. 85, 22603, Hamburg, Germany.

Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Punjab, Pakistan.

出版信息

Sci Rep. 2020 Sep 24;10(1):15658. doi: 10.1038/s41598-020-72644-w.

Abstract

Enzymatic degradation of vegetal biomass offers versatile procedures to improve the production of alternative fuels and other biomass-based products. Here we present the three-dimensional structure of a xylanase from Nectria haematococca (NhGH11) at 1.0 Å resolution and its functional properties. The atomic resolution structure provides details and insights about the complex hydrogen bonding network of the active site region and allowed a detailed comparison with homologous structures. Complementary biochemical studies showed that the xylanase can catalyze the hydrolysis of complex xylan into simple xylose aldopentose subunits of different lengths. NhGH11 can catalyze the efficient breakdown of beechwood xylan, xylan polysaccharide, and wheat arabinoxylan with turnover numbers of 1730.6 ± 318.1 min, 1648.2 ± 249.3 min and 2410.8 ± 517.5 min respectively. NhGH11 showed maximum catalytic activity at pH 6.0 and 45 °C. The mesophilic character of NhGH11 can be explained by distinct structural features in comparison to thermophilic GH11 enzymes, including the number of hydrogen bonds, side chain interactions and number of buried water molecules. The enzymatic activity of NhGH11 is not very sensitive to metal ions and chemical reagents that are typically present in associated industrial production processes. The data we present highlights the potential of NhGH11 to be applied in industrial biomass degradation processes.

摘要

植物生物质的酶促降解为替代燃料和其他基于生物质的产品的生产提供了多种方法。在这里,我们呈现了来自 Nectria haematococca(NhGH11)的木聚糖酶的三维结构,分辨率为 1.0Å,及其功能特性。原子分辨率结构提供了关于活性位点区域复杂氢键网络的细节和见解,并允许与同源结构进行详细比较。补充的生化研究表明,该木聚糖酶可以催化复杂木聚糖水解成不同长度的简单木糖醛糖单元。NhGH11 可以催化山毛榉木聚糖、木聚糖多糖和小麦阿拉伯木聚糖的有效分解,周转数分别为 1730.6±318.1min、1648.2±249.3min 和 2410.8±517.5min。NhGH11 在 pH6.0 和 45°C 时表现出最大的催化活性。与嗜热 GH11 酶相比,NhGH11 的中温特性可以用明显的结构特征来解释,包括氢键的数量、侧链相互作用和埋藏水分子的数量。NhGH11 的酶活性对通常存在于相关工业生产过程中的金属离子和化学试剂不是很敏感。我们呈现的数据突出了 NhGH11 在工业生物质降解过程中的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18af/7519127/0d5ac8e1de82/41598_2020_72644_Fig1_HTML.jpg

相似文献

2
Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.
J Mol Biol. 2008 Feb 1;375(5):1293-305. doi: 10.1016/j.jmb.2007.11.007. Epub 2007 Nov 12.
4
Highly alkali-stable and cellulase-free xylanases from Fusarium sp. 21 and their application in clarification of orange juice.
Int J Biol Macromol. 2020 Jul 15;155:572-580. doi: 10.1016/j.ijbiomac.2020.03.249. Epub 2020 Apr 1.
5
Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1(T).
Carbohydr Res. 2016 Jan;419:60-8. doi: 10.1016/j.carres.2015.10.013. Epub 2015 Dec 1.
6
Impact of an N-terminal extension on the stability and activity of the GH11 xylanase from Thermobacillus xylanilyticus.
J Biotechnol. 2014 Mar 20;174:64-72. doi: 10.1016/j.jbiotec.2014.01.004. Epub 2014 Jan 15.
8
Conservation in the mechanism of glucuronoxylan hydrolysis revealed by the structure of glucuronoxylan xylanohydrolase (CtXyn30A) from Clostridium thermocellum.
Acta Crystallogr D Struct Biol. 2016 Nov 1;72(Pt 11):1162-1173. doi: 10.1107/S2059798316014376. Epub 2016 Oct 28.
9
Transformation of xylan into value-added biocommodities using Thermobacillus composti GH10 xylanase.
Carbohydr Polym. 2020 Nov 1;247:116714. doi: 10.1016/j.carbpol.2020.116714. Epub 2020 Jul 3.
10
Enzymatic Properties of endo-1,4-β-xylanase from Wheat Malt.
Protein Pept Lett. 2019;26(5):332-338. doi: 10.2174/0929866526666190228144851.

引用本文的文献

1
Variation in Microbiota and Chemical Components Within During Initial Wood Decay.
Microorganisms. 2025 Jul 25;13(8):1743. doi: 10.3390/microorganisms13081743.
3
LifeSoaks: a tool for analyzing solvent channels in protein crystals and obstacles for soaking experiments.
Acta Crystallogr D Struct Biol. 2023 Sep 1;79(Pt 9):837-856. doi: 10.1107/S205979832300582X. Epub 2023 Aug 10.
4
Rapid and efficient room-temperature serial synchrotron crystallography using the CFEL TapeDrive.
IUCrJ. 2022 Oct 31;9(Pt 6):778-791. doi: 10.1107/S2052252522010193. eCollection 2022 Nov 1.
5
Whole-Genome Sequencing and Comparative Genome Analysis of Fusarium solani-melongenae Causing Fusarium Root and Stem Rot in Sweetpotatoes.
Microbiol Spectr. 2022 Aug 31;10(4):e0068322. doi: 10.1128/spectrum.00683-22. Epub 2022 Jul 7.

本文引用的文献

1
Validation of Structures in the Protein Data Bank.
Structure. 2017 Dec 5;25(12):1916-1927. doi: 10.1016/j.str.2017.10.009. Epub 2017 Nov 22.
2
Design of an expression system to enhance MBP-mediated crystallization.
Sci Rep. 2017 Jan 23;7:40991. doi: 10.1038/srep40991.
3
On the catalytic mechanisms of lytic polysaccharide monooxygenases.
Curr Opin Chem Biol. 2016 Apr;31:195-207. doi: 10.1016/j.cbpa.2016.04.001. Epub 2016 Apr 16.
4
Lignocellulose degradation mechanisms across the Tree of Life.
Curr Opin Chem Biol. 2015 Dec;29:108-19. doi: 10.1016/j.cbpa.2015.10.018. Epub 2015 Nov 14.
5
Affinity Purification of a Recombinant Protein Expressed as a Fusion with the Maltose-Binding Protein (MBP) Tag.
Methods Enzymol. 2015;559:17-26. doi: 10.1016/bs.mie.2014.11.004. Epub 2015 Apr 15.
6
Fungal cellulases.
Chem Rev. 2015 Feb 11;115(3):1308-448. doi: 10.1021/cr500351c. Epub 2015 Jan 28.
7
The PDB_REDO server for macromolecular structure model optimization.
IUCrJ. 2014 May 30;1(Pt 4):213-20. doi: 10.1107/S2052252514009324. eCollection 2014 Jul 1.
9
X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism.
Acta Crystallogr D Biol Crystallogr. 2014 Jan;70(Pt 1):11-23. doi: 10.1107/S1399004713023626. Epub 2013 Dec 24.
10
Microbial xylanases: engineering, production and industrial applications.
Biotechnol Adv. 2012 Nov-Dec;30(6):1219-27. doi: 10.1016/j.biotechadv.2011.11.006. Epub 2011 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验