Suppr超能文献

预测南非妇女遭受亲密伴侣暴力的脆弱性:基于树的机器学习技术的证据。

Predicting the Vulnerability of Women to Intimate Partner Violence in South Africa: Evidence from Tree-based Machine Learning Techniques.

机构信息

University of Ilorin, Ilorin, Nigeria.

University of KwaZulu-Natal, Durban South Africa.

出版信息

J Interpers Violence. 2022 Apr;37(7-8):NP5228-NP5245. doi: 10.1177/0886260520960110. Epub 2020 Sep 25.

Abstract

Intimate partner violence (IPV) is a pervasive social challenge with severe health and demographic consequences. Global statistics indicate that more than a third of women have experienced IPV at some point in their lives. In South Africa, IPV is considered a significant contributor to the country's broader problem with violence and a leading cause of femicide. Consequently, IPV has been the major focus of legislation and research across different disciplines. The present article aims to contribute to the growing scholarly literature by predicting factors that are associated with the risk of experiencing IPV. We used the 2016 South African Demographic and Health Survey dataset and restricted our analysis to 1,816 ever-married women who had complete information on the variables that were used to generate IPV. Prior research has mainly used regression analysis to identify correlates of IPV; however, while regression analysis can test a priori specified effects, it cannot capture unspecified inter-relationship across factors. To address this limitation, we opted for machine learning methods, which identify hidden and complex patterns and relationships in the data. Our results indicate that the fear of the husband is the most critical factor in determining the experience of IPV. In other words, the risk of IPV in South Africa is associated more with the husband or partner's characteristics than the woman's. The models developed in this study can be used to develop interventions by different stakeholders such as social workers, policymakers, and or other interested partners.

摘要

亲密伴侣暴力(IPV)是一个普遍存在的社会挑战,对健康和人口状况有严重影响。全球统计数据表明,超过三分之一的女性在其一生中的某个时刻经历过 IPV。在南非,IPV 被认为是该国暴力问题的一个重要因素,也是导致女性被杀的主要原因。因此,IPV 一直是不同学科立法和研究的主要焦点。本文旨在通过预测与经历 IPV 风险相关的因素,为不断增长的学术文献做出贡献。我们使用了 2016 年南非人口与健康调查数据集,并将分析限于 1816 名已婚妇女,她们的信息完整,包括用于生成 IPV 的变量。先前的研究主要使用回归分析来确定 IPV 的相关性;然而,虽然回归分析可以测试事先指定的效果,但它不能捕捉因素之间未指定的相互关系。为了解决这个局限性,我们选择了机器学习方法,它可以识别数据中的隐藏和复杂模式和关系。我们的结果表明,丈夫的恐惧是决定经历 IPV 的最关键因素。换句话说,南非的 IPV 风险与丈夫或伴侣的特征有关,而不是与女性有关。本研究中开发的模型可用于不同利益相关者(如社会工作者、政策制定者和其他感兴趣的合作伙伴)制定干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验